Learn More
The evolution of oxygenic photosynthesis had a profound impact on the Earth's surface chemistry, leading to a sharp rise in atmospheric oxygen between 2.45 and 2.32 billion years (Gyr) ago and the onset of extreme ice ages. The oldest widely accepted evidence for oxygenic photosynthesis has come from hydrocarbons extracted from approximately 2.7-Gyr-old(More)
Mitochondrial cytochrome bc1 complex performs two functions: It is a respiratory multienzyme complex and it recognizes a mitochondrial targeting presequence. Refined crystal structures of the 11-subunit bc1 complex from bovine heart reveal full views of this bifunctional enzyme. The "Rieske" iron-sulfur protein subunit shows significant conformational(More)
The record of Archaean microfossils is sparse. Of the few bona fide fossil assemblages, most are from shallow-water settings, and they are typically associated with laminated, stromatolitic sedimentary rocks. Microfossils from deep-sea hydrothermal systems have not been reported in Precambrian rocks (> 544 million years old), although thermophilic microbes(More)
BACKGROUND Eukaryotic cell cycle progression is regulated by cyclin dependent protein kinases (CDKs) whose activity is regulated by association with cyclins and by reversible phosphorylation. Cyclins also determine the subcellular location and substrate specificity of CDKs. Cyclins exhibit diverse sequences but all share homology over a region of(More)
BACKGROUND Seryl-tRNA synthetase is a homodimeric class II aminoacyl-tRNA synthetase that specifically charges cognate tRNAs with serine. In the first step of this two-step reaction, Mg.ATP and serine react to form the activated intermediate, seryl-adenylate. The serine is subsequently transferred to the 3'-end of the tRNA. In common with most other(More)
The crystal structure at 2.7 A resolution of histidyl-tRNA synthetase (HisRS) from Thermus thermophilus in complex with its amino acid substrate histidine has been determined. In the crystal asymmetric unit there are two homodimers, each subunit containing 421 amino acid residues. Each monomer of the enzyme consists of three domains: (1) an N-terminal(More)
The dimeric, peroxisomal 3-ketoacyl-CoA thiolase catalyses the conversion of 3-ketoacyl-CoA into acyl-CoA, which is shorter by two carbon atoms. This reaction is the last step of the beta-oxidation pathway. The crystal structure of unliganded peroxisomal thiolase of the yeast Saccharomyces cerevisiae has been refined at 1.8 A resolution. An unusual feature(More)
BACKGROUND The enzyme methylmalonyl-coenzyme A (CoA) mutase, an alphabeta heterodimer of 150 kDa, is a member of a class of enzymes that uses coenzyme B12 (adenosylcobalamin) as a cofactor. The enzyme induces the formation of an adenosyl radical from the cofactor. This radical then initiates a free-radical rearrangement of its substrate, succinyl-CoA, to(More)
The Stirling Range Formation of southwestern Australia contains discoidal impressions and trace-like fossils in tidal sandstones. The various disks have previously been linked to the Ediacaran biota, younger than 600 million years old. From this unit, we report U-Th-Pb geochronology of detrital zircon and monazite, as well as low-grade metamorphic monazite,(More)
The age of the Vindhyan sedimentary basin in central India is controversial, because geochronology indicating early Proterozoic ages clashes with reports of Cambrian fossils. We present here an integrated paleontologic-geochronologic investigation to resolve this conundrum. New sampling of Lower Vindhyan phosphoritic stromatolitic dolomites from the(More)