Learn More
Current applications of microarrays focus on precise classification or discovery of biological types, for example tumor versus normal phenotypes in cancer research. Several challenging scientific tasks in the post-genomic epoch, like hunting for the genes underlying complex diseases from genome-wide gene expression profiles and thereby building the(More)
With the development of high-throughput experimental techniques such as microarray, mass spectrometry and large-scale mutagenesis, there is an increasing need to automatically annotate gene sets and identify the involved pathways. Although many pathway analysis tools are developed, new tools are still needed to meet the requirements for flexible or advanced(More)
BACKGROUND The construction of the Disease Ontology (DO) has helped promote the investigation of diseases and disease risk factors. DO enables researchers to analyse disease similarity by adopting semantic similarity measures, and has expanded our understanding of the relationships between different diseases and to classify them. Simultaneously,(More)
RNA-Seq provides the capability to characterize the entire transcriptome in multiple levels including gene expression, allele specific expression, alternative splicing, fusion gene detection, and etc. The US FDA-led SEQC (i.e., MAQC-III) project conducted a comprehensive study focused on the transcriptome profiling of rat liver samples treated with 27(More)
Gene expression microarray has been the primary biomarker platform ubiquitously applied in biomedical research, resulting in enormous data, predictive models, and biomarkers accrued. Recently, RNA-seq has looked likely to replace microarrays, but there will be a period where both technologies co-exist. This raises two important questions: Can(More)
BACKGROUND Clustering is a widely used technique for analysis of gene expression data. Most clustering methods group genes based on the distances, while few methods group genes according to the similarities of the distributions of the gene expression levels. Furthermore, as the biological annotation resources accumulated, an increasing number of genes have(More)
Studies on gene expression in response to therapy have led to the discovery of pharmacogenomics biomarkers and advances in precision medicine. Whole transcriptome sequencing (RNA-seq) is an emerging tool for profiling gene expression and has received wide adoption in the biomedical research community. However, its value in regulatory decision making(More)
The rapid advancement of emerging genomics technologies and their application for assessing safety and efficacy of FDA-regulated products require a high standard of reliability and robustness supporting regulatory decision-making in the FDA. To facilitate the regulatory application, the FDA implemented a novel data submission program, Voluntary Genomics(More)