Learn More
CAD has been traditionally used to assist in engineering design and modeling for representation, analysis and manufacturing. Advances in Information Technology and in Biomedicine have created new uses for CAD with many novel and important biomedical applications, particularly tissue engineering in which CAD based bio-tissue informatics model provides(More)
Patient specific porous implants for the reconstruction of craniofacial defects have gained importance due to their better performance over their generic counterparts. The recent introduction of electron beam melting (EBM) for the processing of titanium has led to a one step fabrication of porous custom titanium implants with controlled porosity to meet the(More)
One of the critical functions of a tissue-engineered construct is to be able to provide adequate nutrient and oxygen supply into the interior of the construct. An insufficient supply will lead to slower cellular proliferation rates and eventual apoptosis. The supply of the nutrients is largely governed by the transport properties of the construct which in(More)
Advances in computer-aided technology and its application with biology, engineering and information science to tissue engineering have evolved a new field of computer-aided tissue engineering (CATE). This emerging field encompasses computer-aided design (CAD), image processing, manufacturing and solid free-form fabrication (SFF) for modelling, designing,(More)
Computer-aided tissue engineering (CATE) enables many novel approaches in modelling, design and fabrication of complex tissue substitutes with enhanced functionality and improved cell-matrix interactions. Central to CATE is its bio-tissue informatics model that represents tissue biological, biomechanical and biochemical information that serves as a central(More)
Prediction of human response to potential therapeutic drugs is through conventional methods of in vitro cell culture assays and expensive in vivo animal testing. Alternatives to animal testing require sophisticated in vitro model systems that must replicate in vivo like function for reliable testing applications. Advancements in biomaterials have enabled(More)
Modeling, design and fabrication of tissue scaffolds with intricate architecture, porosity and pore size for desired tissue properties presents a challenge in tissue engineering. This paper will present the details of our development in the design and fabrication of the interior architecture of scaffolds using a novel design approach. The interior(More)
Performance of various functions of the tissue structure depends on porous scaffold microstructures with specific porosity characteristics that influence the behavior of the incorporated or ingrown cells. Understanding the mechanical properties of porous tissue scaffold is important for its biological and biomechanical tissue engineering application. This(More)
The technology of digital image guidance systems has transformed many aspects of neurosurgery, including intracranial tumor surgery, functional neurosurgery, and spinal surgery. Despite the central role of imaging studies in diagnosis and treatment planning, intraoperative image guidance has so far had very limited application to the surgical correction of(More)