#### Filter Results:

#### Publication Year

1991

2017

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Ernst P. Mücke, Isaac Saias, Binhai Zhu
- Symposium on Computational Geometry
- 1996

This paper studies the point location problem in Delau-nay triangulations without preprocessing and additional storage. The proposed procedure finds the query point simply by " walking through " the triangulation, after selecting a " good starting point " by random sampling. The analysis generalizes and extends a recent result for d = 2 dimensions by… (More)

- Luc Devroye, Ernst P. Mücke, Binhai Zhu
- Algorithmica
- 1998

This short note considers the problem of point location in a Delaunay triangulation of n random points, using no additional preprocessing or storage other than a standard data structure representing the triangulation. A simple and easy-to-implement (but, of course, worst-case suboptimal) heuristic is shown to take expected time O(n 1/3). 1. Introduction and… (More)

- Minghui Jiang, Ying Xu, Binhai Zhu
- J. Bioinformatics and Computational Biology
- 2007

Matching two geometric objects in two-dimensional (2D) and three-dimensional (3D) spaces is a central problem in computer vision, pattern recognition, and protein structure prediction. In particular, the problem of aligning two polygonal chains under translation and rotation to minimize their distance has been studied using various distance measures. It is… (More)

- Lusheng Wang, Binhai Zhu
- FAW
- 2009

- Zhixiang Chen, Bin Fu, Minghui Jiang, Binhai Zhu
- COCOA
- 2008

A genomic map is represented by a sequence of gene markers, and a gene marker can appear in several different genomic maps, in either positive or negative form. A strip (syntenic block) is a sequence of distinct markers that appears as subsequences in two or more maps, either directly or in reversed and negated form. Given two genomic maps G and H, the… (More)

We introduce the unoriented Θ-maximum as a new criterion for describing the shape of a set of planar points. We present efficient algorithms for computing the unoriented Θ-maximum of a set of planar points. We also propose a simple linear expected time algorithm for computing the unoriented Θ-maximum of a set of planar points when Θ = π/2. 1. Introduction.… (More)

- Zhongping Qin, Alexander Wolff, Yin-Feng Xu, Binhai Zhu
- ESA
- 2000

Given a label shape L and a set of n points in the plane, the 2-label point-labeling problem consists of placing 2n non-intersecting translated copies of L of maximum size such that each point touches two unique copies—its labels. In this paper we give new and simple approximation algorithms for L an axis-parallel square or a circle. For squares we improve… (More)

- Rob Duncan, Jianbo Qian, Binhai Zhu
- COCOON
- 2001

In this paper, we present an ¥ § ¦ © ¨ ¨ time solution for the following multi-label map labeling problem: Given a set of¨distinct sites in the plane, place at each site a triple of uniform squares of maximum possible size such that all the squares are axis-parallel and a site is on the boundaries of its three labeling squares. We also study the problem… (More)

- Binhai Zhu, Chung Keung Poon
- ISAAC
- 1999

- Lusheng Wang, Binhai Zhu
- TAMC
- 2009

Given two genomic maps G and H represented by a sequence of n gene markers, a strip (syntenic block) is a sequence of distinct markers of length at least two which appear as subsequences in the input maps, either directly or in reversed and negated form. The problem Maximal Strip Recovery (MSR) is to find two subsequences G' and H' of G and H, respectively,… (More)