Learn More
Structure-based computational methods have been widely used in exploring protein-ligand interactions, including predicting the binding ligands of a given protein based on their structural complementarity. Compared to other protein and ligand representations, the advantages of a surface representation include reduced sensitivity to subtle changes in the(More)
Virtual screening using pharmacophore models is an efficient method to identify potential lead compounds for target proteins. Pharmacophore models based on protein structures are advantageous because a priori knowledge of active ligands is not required and the models are not biased by the chemical space of previously identified actives. However, in order to(More)
Water molecules that mediate protein-ligand interactions or are released from the binding site on ligand binding can contribute both enthalpically and entropically to the free energy of ligand binding. To elucidate the thermodynamic profile of individual water molecules and their potential contribution to ligand binding, a hydration site analysis program(More)
BACKGROUND Protein-based pharmacophore models are enriched with the information of potential interactions between ligands and the protein target. We have shown in a previous study that protein-based pharmacophore models can be applied for ligand pose prediction and pose ranking. In this publication, we present a new pharmacophore-based docking program(More)
Water contributes significantly to the binding of small molecules to proteins in biochemical systems. Molecular dynamics (MD) simulation based programs such as WaterMap and WATsite have been used to probe the locations and thermodynamic properties of hydration sites at the surface or in the binding site of proteins generating important information for(More)
Protein-based pharmacophore models derived from protein binding site atoms without the inclusion of any ligand information have become more popular in virtual screening studies. However, the accuracy of protein-based pharmacophore models for reproducing the critical protein-ligand interactions has never been explicitly assessed. In this study, we used known(More)
OBJECTIVES The structures of several mammalian prions have been determined by NMR; however, their transmission and evolutionary features are still unclear. The objective of this study is to explore species barrier information from their structures. METHODS In this study, we compared the functional domains (121-231) of 8 mammalian prions with(More)
In order to investigate the effect of calnexin deletion on the induction of the main ER molecular chaperone BiP, we cultured the wild-type and calnexin-disrupted Saccharomyces cerevisiae strains under normal and stressed conditions. The growth rate of the calnexin-disrupted yeast was almost the same as that of the wild-type yeast under those conditions.(More)
Many studies have attempted to predict in vivo hazards based on the ToxCast in vitro assay results with the goal of using these predictions to prioritize compounds for conventional toxicity testing. Most of these conventional studies rely on in vivo end points observed using preclinical species (e.g., mice and rats). Although the preclinical animal studies(More)