Learn More
The effectiveness of direct volume rendered images depends on finding transfer functions which emphasize structures in the underlying data. In order to support this process, we present a spreadsheet-like constructive visual component-based interface, which also allows novice users to efficiently find meaningful transfer functions. The interface uses a(More)
Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Each copy of any part of a JSTOR transmission must contain the same copyright notice that(More)
Finite element (FE) models are frequently used in engineering and life sciences within time-consuming simulations. In contrast with the regular grid structure facilitated by volumetric data sets, as used in medicine or geosciences, FE models are defined over a non-uniform grid. Elements can have curved faces and their interior can be defined through(More)
Direct Volume Rendering of Finite Element models is challenging since the visualisation process is performed in world coordinates, whereas data fields are usually defined over the elements' material coordinate system. In this paper we present a framework for Direct Volume Rendering of Finite Element models. We present several novel implementations(More)
  • 1