Learn More
Recent advances in high-field MRI have dramatically improved the visualization of human brain anatomy in vivo. Most notably, in cortical gray matter, strong contrast variations have been observed that appear to reflect the local laminar architecture. This contrast has been attributed to subtle variations in the magnetic properties of brain tissue, possibly(More)
Magnetic susceptibility provides an important contrast mechanism for MRI. Increasingly, susceptibility-based contrast is being exploited to investigate brain tissue microstructure and to detect abnormal levels of brain iron as these have been implicated in a variety of neuro-degenerative diseases. However, it remains unclear to what extent magnetic(More)
The suspected link between infection by Zika virus (ZIKV), a re-emerging flavivirus, and microcephaly is an urgent global health concern. The direct target cells of ZIKV in the developing human fetus are not clear. Here we show that a strain of the ZIKV, MR766, serially passaged in monkey and mosquito cells efficiently infects human neural progenitor cells(More)
Cerebral organoids, three-dimensional cultures that model organogenesis, provide a new platform to investigate human brain development. High cost, variability, and tissue heterogeneity limit their broad applications. Here, we developed a miniaturized spinning bioreactor (SpinΩ) to generate forebrain-specific organoids from human iPSCs. These organoids(More)
T(2)*-weighted gradient-echo MRI images at high field (≥ 7T) have shown rich image contrast within and between brain regions. The source for these contrast variations has been primarily attributed to tissue magnetic susceptibility differences. In this study, the contribution of myelin to both T(2)* and frequency contrasts is investigated using a mouse model(More)
BACKGROUND Cytoplasmic filamentous rods and rings (RR) structures were identified using human autoantibodies as probes. In the present study, the formation of these conserved structures in mammalian cells and functions linked to these structures were examined. METHODOLOGY/PRINCIPAL FINDINGS Distinct cytoplasmic rods (∼3-10 µm in length) and rings (∼2-5 µm(More)
Previous authors have shown that the transverse relaxivity R(2)* and frequency shifts that characterize gradient echo signal decay in magnetic resonance imaging are closely associated with the distribution of iron and myelin in the brain's white matter. In multiple sclerosis, iron accumulation in brain tissue may reflect a multiplicity of pathological(More)
Oscillatory electrical brain activity in the alpha (8-13 Hz) band is a prominent feature of human electroencephalography (EEG) during alert wakefulness, and is commonly thought to arise primarily from the occipital and parietal parts of the cortex. While the thalamus is considered to play a supportive role in the generation and modulation of cortical alpha(More)
OBJECTIVE Cancer patients and their families differed in their attitude toward truth telling. The objective is to investigate different attitudes of Chinese patients or families toward whether and how to disclose diagnosis to patients with different stages of cancer and to examine the difference between the two groups. METHODS A questionnaire was(More)
BACKGROUND Nucleobindin 2 (NUCB2) protein, a novel oncoprotein, is overexpressed in breast cancer. To date, there have been no published data regarding the role of NUCB2 protein expression in prostate cancer (PCa). Therefore, this study was performed to investigate the correlations between NUCB2 protein expression and prognosis in patients with PCa. (More)