Learn More
Soil salinity is a major abiotic stress that limits plant growth and agriculture productivity. To cope with salt stress, plants have evolved complex salt-responsive signaling and metabolic processes at the cellular, organ, and whole-plant levels. Investigation of the physiological and molecular mechanisms underlying plant salinity tolerance will provide(More)
Mature pollen grains (PGs) from most plant species are metabolically quiescent. However, once pollinated onto stigma, they quickly hydrate and germinate. A PG can give rise to a vegetative cell-derived polarized pollen tube (PT), which represents a specialized polar cell. The polarized PT grows by the tip and requires interaction of different signaling(More)
Soil salinity is contributed largely by NaCl but some halophytes such as Sesuvium portulacastrum have evolved to adapt salinity environment and demonstrate optimal development under moderate salinity. To elucidate the detail mechanisms of the great salt tolerance and determine the respective contributions of Na(+), K(+) and Cl(-) on the development of S.(More)
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we(More)
Understanding the role of different subtypes of tumor-infiltrating lymphocytes (TIL) in the immunosuppressive tumor microenvironment is essential for improving cancer treatment. Enriched γδ1 T-cell populations in TILs suppress T-cell responses and dendritic cell maturation in breast cancer, where their presence is correlated negatively with clinical(More)
BACKGROUND Transforming growth factors (TGF)-beta1, TGF-betaR2 and Smad4 belong to the TGF family, and play important roles in carcinogenesis and the development of carcinoma, especially hepatocellular carcinoma (HCC). TGF-beta1 is a multipotent polypeptide, which inhibits the growth of epithelial cells including hepatoma cell lines and hepatocytes by(More)
Six new cycloartane triterpene glycosides (1-6), beesiosides A-F, were isolated from whole plants of Beesia calthaefolia, and their structures were elucidated on the basis of extensive NMR experiments and chemical methods. Beesiosides A-F were assigned as (20S,24R)-epoxy-9,19-cyclolanostane-3beta,16beta,18,25-tetraol-3-O-beta-D-xylopyranoside (1),(More)
Accumulating evidence suggests the immunosuppressive microenvironments created by malignant tumors represent a major obstacle for effective anti-tumor immunity. A better understanding of the suppressive mechanisms mediated by tumor microenvironments and the development of strategies to reverse the immune suppression are major challenges for the success of(More)
A transparent, conductive, and flexible electrode is demonstrated. It is based on an inexpensive and easily manufacturable metallic network formed by depositing metals onto a template film. This electrode shows excellent electro-optical properties, with the figure of merit ranging from 300 to 700, and transmittance from 82% (~4.3 Ω sq(-1) ) to 45% (~0.5 Ω(More)
BACKGROUND The aim of this study was to detect the expression of apoptosis factor caspase-3 in transferred HepG2 cells and provide feasible evaluation of the treatment for primary liver cancer with gene methods. METHODS The pcDNA4C-LIGHT cDNA was extracted from Escherichia coli JM-109; then, the pcDNA4C-LIGHT cDNA was transferred into the HepG2 cells by a(More)