Bing Liu

Learn More
MOTIVATION MicroRNAs (miRNAs) are small non-coding RNAs that cause mRNA degradation and translational inhibition. They are important regulators of development and cellular homeostasis through their control of diverse processes. Recently, great efforts have been made to elucidate their regulatory mechanism, but the functions of most miRNAs and their precise(More)
The identification of miRNAs and their target mRNAs and the construction of their regulatory networks may give new insights into biological procedures. This study proposes a computational method to discover the functional miRNA-mRNA regulatory modules (FMRMs), that is, groups of miRNAs and their target mRNAs that are believed to participate cooperatively in(More)
MOTIVATION microRNAs (miRNAs) are known to play an essential role in the post-transcriptional gene regulation in plants and animals. Currently, several computational approaches have been developed with a shared aim to elucidate miRNA-mRNA regulatory relationships. Although these existing computational methods discover the statistical relationships, such as(More)
MicroRNAs (miRNAs) play important roles in gene regulatory networks. In this paper, we propose a probabilistic topic model to infer regulatory networks of miRNAs and their target mRNAs for specific biological conditions at the post-transcriptional level, so-called functional miRNA-mRNA regulatory modules (FMRMs). The probabilistic model used in this paper(More)
microRNAs (miRNAs) are important gene regulators. They control a wide range of biological processes and are involved in several types of cancers. Thus, exploring miRNA functions is important for diagnostics and therapeutics. To date, there are few feasible experimental techniques for discovering miRNA regulatory mechanisms. Alternatively, predictions of(More)
Discovering the regulatory relationships between microRNAs (miRNAs) and mRNAs is an important problem that interests many biologists and medical researchers. A number of computational methods have been proposed to infer miRNA-mRNA regulatory relationships, and are mostly based on the statistical associations between miRNAs and mRNAs discovered in(More)
MOTIVATION MicroRNAs (miRNAs) play crucial roles in complex cellular networks by binding to the messenger RNAs (mRNAs) of protein coding genes. It has been found that miRNA regulation is often condition-specific. A number of computational approaches have been developed to identify miRNA activity specific to a condition of interest using gene expression(More)
  • 1