Bing-Bing Wang

Learn More
Alternative splicing (AS) has been extensively studied in mammalian systems but much less in plants. Here we report AS events deduced from EST/cDNA analysis in two model plants: Arabidopsis and rice. In Arabidopsis, 4,707 (21.8%) of the genes with EST/cDNA evidence show 8,264 AS events. Approximately 56% of these events are intron retention (IntronR), and(More)
Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic(More)
The nucleotide-binding site (NBS)-Leucine-rich repeat (LRR) gene family accounts for the largest number of known disease resistance genes, and is one of the largest gene families in plant genomes. We have identified 333 nonredundant NBS-LRRs in the current Medicago truncatula draft genome (Mt1.0), likely representing 400 to 500 NBS-LRRs in the full genome,(More)
A total of 74 small nuclear RNA (snRNA) genes and 395 genes encoding splicing-related proteins were identified in the Arabidopsis genome by sequence comparison and motif searches, including the previously elusive U4atac snRNA gene. Most of the genes have not been studied experimentally. Classification of these genes and detailed information on gene(More)
U2AF (U2 small nuclear ribonucleoprotein auxiliary factor) is an essential splicing factor with critical roles in recognition of the 3'-splice site. In animals, the U2AF small subunit (U2AF35) can bind to the 3'-AG intron border and promote U2 small nuclear RNP binding to the branch-point sequences of introns through interaction with the U2AF large subunit.(More)
Although originally thought to be less frequent in plants than in animals, alternative splicing (AS) is now known to be widespread in plants. Here we report the characteristics of AS in legumes, one of the largest and most important plant families, based on EST alignments to the genome sequences of Medicago truncatula (Mt) and Lotus japonicus (Lj). Based on(More)
Expressed sequence tag (EST) data are a major contributor to the known plant sequence space. Organization of the data into non-redundant clusters representing tentative unique genes provides snapshots of the gene repertoires of a species. This chapter reviews availability of sequences and sequence analysis results and describes several resources and tools(More)
Laboratoire des Interactions Plantes Microorganismes, UMR CNRS-INRA 442–2594, 31326 Castanet Tolosan, France (C.A.-T.); Departments of Plant Pathology and Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (C.A.-T., B.-B.W., N.D.Y.); Advanced Center for Genome Technology and Department of Chemistry and Biochemistry, University of Oklahoma,(More)
  • 1