Bina J. Mehta

Learn More
The industrial production of beta-carotene with the zygomycete Blakeslea trispora involves the joint cultivation of mycelia of opposite sex in the presence of beta-ionone and other chemical activators. We have obtained improved strains by mutation and heterokaryosis. We chose wild strains on the basis of their growth and carotene content in single and mated(More)
The accumulation of (beta)-carotene by the zygomycete Phycomyces blakesleeanus is increased by mutations in the carS gene. The treatment of spores of carS mutants with N-methyl-N(prm1)-nitro-N-nitrosoguanidine led to the isolation, at very low frequencies, of mutants that produced higher levels of (beta)-carotene. Strain S556 produced about 9 mg of(More)
The industrial production of -carotene with the zygomycete Blakeslea trispora involves the joint cultivation of mycelia of opposite sex in the presence of -ionone and other chemical activators. We have obtained improved strains by mutation and heterokaryosis. We chose wild strains on the basis of their growth and carotene content in single and mated(More)
The filamentous fungus Blakeslea trispora, an industrial carotene source, contains β-carotene and precursors of its synthesis — phytoene, phytofluene, lycopene, and γ-carotene. Strain improvement through mutagenesis is difficult because all life stages are multinucleate. Mutants have been obtained following exposure of wild-type spores to(More)
The fungus Fusarium fujikuroi (Gibberella fujikuroi mating group C) exhibits a rich secondary metabolism that includes the synthesis of compounds of biotechnological interest, such as gibberellins, bikaverin, and carotenoids. The effect of the carbon source on their production was checked using a two-phase incubation protocol, in which nine different sugars(More)
A new purification procedure involving five column-chromatography steps is described for dihydro-orotase (L-5,6-dihydro-orotate amidohydrolase, EC 3.5.2.3) from Clostridium oroticum (A.T.C.C. 25750). The native purified enzyme is a dimer of Mr 102 000 and contains 4.0 +/- 0.3 g-atoms of zinc/mol of dimer. These observations agree with those reported(More)
Enzyme elements that are involved in the reversible cyclization of L-carbamylaspartate to L-dihdroorotate catalyzed by dihydroorotase (EC 3.5.2.3) from Clostridium oroticum (ATCC 25750) have been studied. Removal of Zn(II) from the enzyme by chelators followed by incubation of apoenzyme with Co(II) results in replacement of two to three of the four Zn(II)(More)