Learn More
Gene co-expression networks are increasingly used to explore the system-level functionality of genes. The network construction is conceptually straightforward: nodes represent genes and nodes are connected if the corresponding genes are significantly co-expressed across appropriately chosen tissue samples. In reality, it is tricky to define the connections(More)
Crohn's disease and ulcerative colitis, the two common forms of inflammatory bowel disease (IBD), affect over 2.5 million people of European ancestry, with rising prevalence in other populations. Genome-wide association studies and subsequent meta-analyses of these two diseases as separate phenotypes have implicated previously unsuspected mechanisms, such(More)
A key goal of biology is to construct networks that predict complex system behavior. We combine multiple types of molecular data, including genotypic, expression, transcription factor binding site (TFBS), and protein-protein interaction (PPI) data previously generated from a number of yeast experiments, in order to reconstruct causal gene networks. Networks(More)
SUMMARY Hierarchical clustering is a widely used method for detecting clusters in genomic data. Clusters are defined by cutting branches off the dendrogram. A common but inflexible method uses a constant height cutoff value; this method exhibits suboptimal performance on complicated dendrograms. We present the Dynamic Tree Cut R package that implements(More)
Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has(More)
The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer's disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain(More)
The neuroanatomical architecture is considered to be the basis for understanding brain function and dysfunction. However, existing imaging tools have limitations for brainwide mapping of neural circuits at a mesoscale level. We developed a micro-optical sectioning tomography (MOST) system that can provide micrometer-scale tomography of a centimeter-sized(More)
Common human diseases result from the interplay of many genes and environmental factors. Therefore, a more integrative biology approach is needed to unravel the complexity and causes of such diseases. To elucidate the complexity of common human diseases such as obesity, we have analysed the expression of 23,720 transcripts in large population-based blood(More)
There has been intense effort over the past couple of decades to identify loci underlying quantitative traits as a key step in the process of elucidating the etiology of complex diseases. Recently there has been some effort to coalesce non-biased high-throughput data, e.g. high density genotyping and genome wide RNA expression, to drive understanding of the(More)