Learn More
Manifold Ranking (MR), a graph-based ranking algorithm, has been widely applied in information retrieval and shown to have excellent performance and feasibility on a variety of data types. Particularly, it has been successfully applied to content-based image retrieval, because of its outstanding ability to discover underlying geometrical structure of the(More)
Collaborative filtering (CF) is one of the most successful recommendation approaches. It typically associates a user with a group of like-minded users based on their preferences over all the items, and recommends to the user those items enjoyed by others in the group. However we find that two users with similar tastes on one item subset may have totally(More)
Recently, the task of unsupervised face-name association has received a considerable interests in multimedia and information retrieval communities. It is quite different with the generic facial image annotation problem because of its unsupervised and ambiguous assignment properties. Specifically, the task of face-name association should obey the following(More)
—Graph-based ranking models have been widely applied in information retrieval area. In this paper, we focus on a well known graph-based model-the Ranking on Data Manifold model, or Manifold Ranking (MR). Particularly, it has been successfully applied to content-based image retrieval, because of its outstanding ability to discover underlying geometrical(More)
Recently, graph-based ranking algorithms have received considerable interests in machine learning, computer vision and information retrieval communities. Ranking on data manifold (or manifold ranking, MR) is one of the representative approaches. One of the limitations of manifold ranking is its high computational complexity (O(n 3), where n is the number of(More)
  • 1