Learn More
With the capability of high speed flying, a more reliable and cost efficient way to access space isprovided by hypersonic flight vehicles. Controller design, as key technology to make hypersonic flight feasibleand efficient, has numerous challenges stemming from large flight envelope with extreme range of operationconditions, strong interactions between(More)
This paper studies the composite adaptive tracking control for a class of uncertain nonlinear systems in strict-feedback form. Dynamic surface control technique is incorporated into radial-basis-function neural networks (NNs)-based control framework to eliminate the problem of explosion of complexity. To avoid the analytic computation, the command filter is(More)
In this paper, the direct adaptive neural controller is investigated for the longitudinal dynamics of a generic hypersonic flight vehicle (HFV). The objective of the controller is to make the altitude and velocity to follow a given desired trajectory in the presence of aerodynamic uncertainties. Based on the functional decomposition, the adaptive(More)
In this brief, a novel adaptive-critic-based neural network (NN) controller is investigated for nonlinear pure-feedback systems. The controller design is based on the transformed predictor form, and the actor-critic NN control architecture includes two NNs, whereas the critic NN is used to approximate the strategic utility function, and the action NN is(More)
Keywords: Hypersonic aircraft Extreme learning machine Neural networks Single-hidden layer feedforward network a b s t r a c t This paper describes the neural controller design for the longitudinal dynamics of a generic hypersonic flight vehicle (HFV). The dynamics are transformed into the strict-feedback form. Considering the uncertainty, the neural(More)