Bin Xu

Learn More
In this brief, a novel adaptive-critic-based neural network (NN) controller is investigated for nonlinear pure-feedback systems. The controller design is based on the transformed predictor form, and the actor-critic NN control architecture includes two NNs, whereas the critic NN is used to approximate the strategic utility function, and the action NN is(More)
This paper studies the composite adaptive tracking control for a class of uncertain nonlinear systems in strict-feedback form. Dynamic surface control technique is incorporated into radial-basis-function neural networks (NNs)-based control framework to eliminate the problem of explosion of complexity. To avoid the analytic computation, the command filter is(More)
In this paper, the direct adaptive neural controller is investigated for the longitudinal dynamics of a generic hypersonic flight vehicle (HFV). The objective of the controller is to make the altitude and velocity to follow a given desired trajectory in the presence of aerodynamic uncertainties. Based on the functional decomposition, the adaptive(More)
This paper presents an efficient hybrid feedback feedforward (HFF) adaptive approximation-based control (AAC) strategy for a class of uncertain Euler-Lagrange systems. The control structure includes a proportional-derivative (PD) control term in the feedback loop and a radial-basis-function (RBF) neural network (NN) in the feedforward loop, which mimics the(More)
This paper studies both indirect and direct global neural control of strict-feedback systems in the presence of unknown dynamics, using the dynamic surface control (DSC) technique in a novel manner. A new switching mechanism is designed to combine an adaptive neural controller in the neural approximation domain, together with the robust controller that(More)