Bin Tu

Learn More
Recurrent and spontaneous seizures in epilepsy result from poorly defined cell signaling aberrations thought to include synaptic and extracellular matrix remodeling. Here we have used a rat hippocampal kindling model to study cyclooxygenase-2 (COX-2) gene expression in epileptogenesis. COX-2, encoded in an early-response gene, increases in a synaptic(More)
Glutamate, the most abundant excitatory neurotransmitter in the mammalian CNS, plays a central role in many neuronal functions, such as long-term potentiation, which is necessary for learning and memory formation. The fast excitatory glutamate neurotransmission is mediated by ionotropic receptors that include AMPA/kainate and N-methyl-D-aspartate (NMDA)(More)
The entorhinal cortex (EC) is a part of the hippocampal complex that is essential to learning and memory, and nicotine affects memory by activating nicotinic acetylcholine receptors (nAChRs) in the hippocampal complex. However, it is not clear what types of neurons in the EC are sensitive to nicotine and whether they play a role in nicotine-induced memory(More)
In the epileptic brain, hippocampal dentate granule cells become synaptically interconnected through the sprouting of mossy fibers. This new circuitry is expected to facilitate epileptiform discharge. Prolonged seizures induce the long-lasting neoexpression of neuropeptide Y (NPY) in mossy fibers. NPY is released spontaneously from recurrent mossy fiber(More)
Cys-loop ligand-gated nicotinic ACh receptors (nAChRs) and G protein-coupled muscarinic ACh receptors (mAChRs) are expressed on rat hippocampal interneurones where they can regulate excitability, synaptic communication and cognitive function. Even though both nAChRs and mAChRs appear to co-localize to the same interneurones, it is not clear whether there is(More)
A unique feature of temporal lobe epilepsy is the formation of recurrent excitatory connections among granule cells of the dentate gyrus as a result of mossy fiber sprouting. This novel circuit contributes to a reduced threshold for granule cell synchronization. In the rat, activity of the recurrent mossy fiber pathway is restrained by the neoexpression and(More)
In the pilocarpine model of temporal lobe epilepsy, mossy fibers coexpress the inhibitory transmitter neuropeptide Y (NPY) with glutamate. The effects of endogenous and applied NPY on recurrent mossy fiber synaptic transmission were investigated with the use of whole-cell voltage-clamp and field recordings in rat hippocampal slices. Applied NPY reversibly(More)
OBJECTIVES To characterize the neurophysiological changes in a patient with mild traumatic brain injury (mTBI) and to compare these changes with a small cohort of patients with neurocardiogenic syncope, an analogous cause of transient neurological dysfunction. DESIGN Case report and quantitative analysis of a small electroencephalography (EEG) cohort. (More)
OBJECTIVE Seizures have been implicated as a cause of secondary brain injury, but the systemic and cerebral physiologic effects of seizures after acute brain injury are poorly understood. METHODS We analyzed intracortical electroencephalographic (EEG) and multimodality physiological recordings in 48 comatose subarachnoid hemorrhage patients to better(More)
3' uridylation is increasingly recognized as a conserved RNA modification process associated with RNA turnover in eukaryotes. 2'-O-methylation on the 3' terminal ribose protects micro(mi)RNAs from 3' truncation and 3' uridylation in Arabidopsis. Previously, we identified HESO1 as the nucleotidyl transferase that uridylates most unmethylated miRNAs in vivo,(More)