Learn More
Surface-enhanced Raman scattering (SERS) is a powerful spectroscopy technique that can provide non-destructive and ultra-sensitive characterization down to single molecular level, comparable to single-molecule fluorescence spectroscopy. However, generally substrates based on metals such as Ag, Au and Cu, either with roughened surfaces or in the form of(More)
Fine-grained data parallelism is increasingly common in mainstream processors in the form of longer vectors and on-chip GPUs. This paper develops support for exploiting such data parallelism for a class of non-numeric, non-graphic applications, which perform computations while traversing many independent, irregular data structures. While the traversal of(More)
Content protection mechanisms are intended to enforce the usage rights on the content. These usage rights are carried by a license. Sometimes, a license even carries the key that is used to unlock the protected content. Unfortunately, license protection is difficult, yet it is important for digital rights management (DRM). Not many license protection(More)
The pursuit of computational efficiency has led to the proliferation of throughput-oriented hardware, from GPUs to increasingly wide vector units on commodity processors and accelerators. This hardware is designed to efficiently execute data-parallel computations in a vectorized manner. However, many algorithms are more naturally expressed as(More)
When carrying out the Automatic Optical Inspection (AOI) on the Printing Circuit Board (PCB) adopted Surface Mounted Technology (SMT) , inspecting path planning is a question of combinatorial optimization, every inspecting window exists certain move range. In view of all above problems, this paper studied the standard Particle Swarm Optimization (PSO)(More)
The conductance of single-molecule junctions may be governed by the structure of the molecule in the gap or by the way it bonds with the leads, and the information contained in a Raman spectrum is ideal for examining both. Here we demonstrate that molecule-to-surface bonding may be characterized during electron transport by 'fishing-mode' tip-enhanced Raman(More)
Intel Xeon Phi (MIC architecture) is a relatively new accelerator chip, which combines large-scale shared memory parallelism with wide SIMD lanes. Mapping applications on a node with such an architecture to achieve high parallel efficiency's a major challenge. In this paper, we focus on developing system for heterogeneous graph processing, which is able to(More)
The Intel Xeon Phi offers a promising solution to coprocessing, since it is based on the popular x86 instruction set. However, to fully utilize its potential, applications must be vectorized to leverage the wide SIMD lanes, in addition to effective large-scale shared memory parallelism. Compared to the SIMT execution model on GPGPUs with CUDA or OpenCL,(More)
Finite state machines (FSMs) are basic computation models that play essential roles in many applications. Enabling efficient parallel FSM execution is critical to the performance of these applications. However, they are very challenging to parallelize due to their inherent data dependencies that occur at each step of computations. Existing efforts on FSM(More)