Bin Rao

Learn More
Optical coherence tomography is an emerging non-invasive technology that provides high resolution, cross-sectional tomographic images of internal structures of specimens. OCT images, however, are usually degraded by significant speckle noise. Here we introduce to our knowledge the first 3D approach to attenuating speckle noise in OCT images. Unlike 2D(More)
We present label-free functional photoacoustic imaging of the ocular microvasculature in living animals. The anterior segment of an adult mouse was imaged with a laser exposure level well within the American National Standards Institute safety standards. Individual red blood cells traveling along the iris capillaries were clearly resolved, and the(More)
We describe an algorithm based on shrinkage in the curvelet domain to attenuate speckles in optical coherence tomography (OCT) images. The algorithm exploits the curvelet transform's sparse representation of edge discontinuities that are common in OCT images and its ability to map signals and noise into different areas in the curvelet domain. The speckle(More)
Epilepsy mapping with high spatial and temporal resolution has great significance for both fundamental research on epileptic neurons and the clinical management of epilepsy. In this communication, we demonstrate for the first time in vivo epilepsy mapping with high spatial and temporal resolution and dual optical contrasts in an animal model. Through the(More)
A simple, sensitive and reproducible high-performance liquid chromatography (HPLC) method has been validated for determining concentrations of glutamate, glycine, and alanine in human plasma. Proteins in plasma were precipitated with perchloric acid, followed by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC). Simultaneous analysis(More)
  • 1