Learn More
The tensor completion problem is to recover a low-n-rank tensor from a subset of its entries. The main solution strategy has been based on the extensions of trace norm for the minimization of tensor rank via convex optimization. This strategy bears the computational cost required by the singular value decomposition (SVD) which becomes increasingly expensive(More)
The traffic forecasting model, when considered as a system with inputs of historical and current data and outputs of future data, behaves in a nonlinear fashion and varies with time of day. Traffic data are found to change abruptly during the transition times of entering or leaving rush hours. Accurate and real-time models are needed to approximate the(More)
Feature selection has attracted significant attention in data mining and machine learning in the past decades. Many existing feature selection methods eliminate redundancy by measuring pairwise inter-correlation of features, whereas the complementariness of features and higher inter-correlation among more than two features are ignored. In this study, a(More)
The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California. This report does not constitute a standard, specification, or regulation. ABSTRACT Dynamic traffic assignment (DTA)(More)
This paper addressed a framework of a traffic prediction model which could eliminate the noises caused by random travel conditions. In the meantime, this model can also quantitatively calculate the influence of special factors. This framework combined several artificial intelligence technologies such as wavelet transform, neural network, and fuzzy logic. In(More)