• Citations Per Year
Learn More
Accurate tumor classification is crucial to the proper treatment of cancer. To now, sparse representation (SR) has shown its great performance for tumor classification. This paper conceives a new SR-based method for tumor classification by using gene expression data. In the proposed method, we firstly use latent low-rank representation for extracting(More)
Identifying differentially expressed pathways (DEPs) plays important roles in understanding tumor etiology and promoting clinical treatment of cancer or other diseases. By assuming gene expression to be a sparse non-negative linear combination of hidden pathway signals, we propose a pathway crosstalk-based transcriptomics data analysis method (ctPath) for(More)
  • 1