Learn More
Whirling disease, caused by the parasite Myxobolus cerebralis, has infected rainbow trout (Oncorhynchus mykiss) and other salmonid fish in the western United States, often with devastating results to native populations but without a discernible spatial pattern. The parasite develops in a complex 2-host system in which the aquatic oligochaete Tubifex tubifex(More)
Myxobolus cerebralis, the parasite that causes salmonid whirling disease, has had detrimental effects on several salmonid populations in the Intermountain West, including the rainbow trout in the Madison River, Montana, USA. The goal of this study was to examine relationships among characteristics of the environment, Tubifex tubifex (the alternate host)(More)
Myxobolus cerebralis, the causative agent of whirling disease, infects both salmonid fish and an aquatic oligochaete, Tubifex tubifex. Although M. cerebralis has been detected in river drainages throughout the United States, disease severity among wild fish populations has been highly variable. Tubifex tubifex populations have been genetically characterized(More)
The aquatic oligochaete Tubifex tubifex is an obligate host of Myxobolus cerebralis, the causative agent of salmonid whirling disease. Tubifex tubifex can become infected by ingesting myxospores of M. cerebralis that have been released into sediments upon death and decomposition of infected salmonids. Infected worms release triactinomyxons into the water(More)
Host-parasite interactions influence host population growth, host evolution and parasite success. We examined the interactions among Myxobolus cerebralis, the parasite that causes salmonid whirling disease, and resistant and susceptible strains of the oligochaete host Tubifex tubifex. Strains of T. tubifex with diverse genotypes often coexist in nature and(More)
Land use has been implicated as a major causal factor in the recent surge of emerging and reemerging zoonotic diseases worldwide. Whirling disease, a parasitic infection caused by the myxozoan, Myxobolus cerebralis, has led to major declines in wild trout populations within the Intermountain West of the USA and is suspected to be exacerbated by land and(More)
The conservation of some imperiled species has been impaired by taxonomic uncertainty. The Snake River physa, Physa natricina Taylor 1988, is an endangered gastropod to the middle Snake River that has rarely been collected live. The rarity of P. natricina and the lack of live specimens have fueled debate regarding the validity of the species. Our objectives(More)
Animal population dynamics in open systems are affected not only by agents of mortality and the influence of species interactions on behavior and life histories, but also by dispersal and recruitment. We used an extensive data set to compare natural loss rates of two mayfly species that co-occur in high-elevation streams varying in predation risk, and(More)
Understanding the genetic structure of parasite populations on the natural landscape can reveal important aspects of disease ecology and epidemiology and can indicate parasite dispersal across the landscape. Myxobolus cerebralis (Myxozoa: Myxosporea), the causative agent of whirling disease in the definitive host Tubifex tubifex, is native to Eurasia and(More)
Density dependence in colonization is poorly understood. We studied colonization by a benthic, stream-dwelling caddisfly, Hydropsyche slossonae, through experiments varying conspecific densities and environmental conditions. A model of larval acceptance or rejection of a locality (dispersal from the locality) was developed and fitted to the data to estimate(More)