Bill MacCartney

Learn More
This paper describes a system for extracting typed dependency parses of English sentences from phrase structure parses. In order to capture inherent relations occurring in corpus texts that can be critical in real-world applications, many NP relations are included in the set of grammatical relations used. We provide a comparison of our system with Minipar(More)
This paper presents the first use of a computational model of natural logic—a system of logical inference which operates over natural language—for textual inference. Most current approaches to the PASCAL RTE textual inference task achieve robustness by sacrificing semantic precision; while broadly effective, they are easily confounded by ubiquitous(More)
The alignment problem—establishing links between corresponding phrases in two related sentences—is as important in natural language inference (NLI) as it is in machine translation (MT). But the tools and techniques of MT alignment do not readily transfer to NLI, where one cannot assume semantic equivalence, and for which large volumes of bitext are lacking.(More)
We propose an approach to natural language inference based on a model of natural logic, which identifies valid inferences by their lexical and syntactic features, without full semantic interpretation. We greatly extend past work in natural logic, which has focused solely on semantic containment and monotonicity, to incorporate both semantic exclusion and(More)
We propose a model of natural language inference which identifies valid inferences by their lexical and syntactic features, without full semantic interpretation. We extend past work in natural logic, which has focused on semantic containment and monotonicity, by incorporating both semantic exclusion and implicativity. Our model decomposes an inference(More)
Inference has been a central topic in artificial intelligence from the start, but while automatic methods for formal deduction have advanced tremendously, comparatively little progress has been made on the problem of natural language inference (NLI), that is, determining whether a natural language hypothesis h can justifiably be inferred from a natural(More)
This paper proposes a new architecture for textual inference in which finding a good alignment is separated from evaluating entailment. Current approaches to semantic inference in question answering and textual entailment have approximated the entailment problem as that of computing the best alignment of the hypothesis to the text, using a locally(More)
This paper advocates a new architecture for textual inference in which finding a good alignment is separated from evaluating entailment. Current approaches to semantic inference in question answering and textual entailment have approximated the entailment problem as that of computing the best alignment of the hypothesis to the text, using a locally(More)
Query answering over commonsense knowledge bases typically employs a first-order logic theorem prover. While first-order inference is intractable in general, provers can often be hand-tuned to answer queries with reasonable performance in practice. Appealing to previous theoretical work on partition-based reasoning, we propose resolutionbased theorem(More)
We describe an approach to textual inference that improves alignments at both the typed dependency level and at a deeper semantic level. We present a machine learning approach to alignment scoring, a stochastic search procedure, and a new tool that finds deeper semantic alignments, allowing rapid development of semantic features over the aligned graphs.(More)