Learn More
The interaction of heptalysine with vesicles formed from mixtures of the acidic lipid phosphatidylserine (PS) and the zwitterionic lipid phosphatidylcholine (PC) was examined experimentally and theoretically. Three types of experiments showed that smeared charge theories (e.g., Gouy-Chapman-Stern) underestimate the membrane association when the peptide(More)
Much of the catalytic power of trypsin is derived from the unusual buried, charged side chain of Asp102. A polar cave provides the stabilization for maintaining the buried charge, and it features the conserved amino acid Ser214 adjacent to Asp102. Ser214 has been replaced with Ala, Glu, and Lys in rat anionic trypsin, and the consequences of these changes(More)
Here, we discuss the relationship between protein sequence and protein structural similarity. It is established that a protein structural distance (PSD) of 2.0 is a threshold above which two proteins are unlikely to have a detectable pairwise sequence relationship. A precise correlation is established between the level of sequence similarity, defined by a(More)
The magnitude of the hydrophobic effect, as measured from the surface area dependence of the solubilities of hydrocarbons in water, is generally thought to be about 25 calories per mole per square angstrom (cal mol-1 A-2). However, the surface tension at a hydrocarbon-water interface, which is a "macroscopic" measure of the hydrophobic effect, is(More)
This article is a personal perspective on the developments in the field of protein folding over approximately the last 40 years. In addition to its historical aspects, the article presents a view of the principles of protein folding with particular emphasis on the relationship of these principles to the problem of protein structure prediction. It is argued(More)
Solutions to the nonlinear Poisson-Boltzmann equation were used to obtain the electrostatic potentials of RNA molecules that have known three-dimensional structures. The results are described in terms of isopotential contours and surface electrostatic potential maps. Both representations have unexpected features: 'cavities' within isopotential contours and(More)
Computer simulations of the diffusion of a substrate to an enzyme active site were performed. They included the detailed shape of the protein and an accurate description of its electrostatic potential. Application of the method to the diffusion of the superoxide anion to the protein superoxide dismutase revealed that the electric field of the enzyme(More)