Learn More
In lower eukaryotes-like fish, innate immunity contributed by various pattern recognition receptor (PRR) plays an essential role in protection against diseases. Nucleotide-binding and oligomerization domain (NOD)-2 is a cytoplasmic PRR that recognizes MDP (muramyl dipeptide) of the Gram positive and Gram negative bacteria as ligand and activates signalling(More)
Nucleotide-binding and oligomerization domain (NOD)-2 is a cytoplasmic pattern recognition receptor (PRR) and is a member of NOD like receptor (NLR) family. It senses a wide range of bacteria and viruses or their products and is involved in innate immune responses. In this report, NOD-2 gene was cloned and characterized from rohu (Labeo rohita) which is(More)
Toll-like receptors (TLRs) are one of the key components of innate immunity. Among various TLR types, TLR2 is involved in recognizing specific microbial structures such as peptidoglycan (PGN), lipoteichoic acid (LTA), zymosan etc., and after binding them it triggers myeloid differentiation primary response gene 88 (MyD88)-dependent signaling pathway to(More)
Toll-like receptor 2 (TLR2) is a member of TLR family. It recognizes a wide range of bacteria and their products, and is involved in inducing innate immune responses. In this article, we reported inductive expression of TLR2 and myeloid differentiation primary response gene 88 (MyD88)-dependent signaling in the Indian major carp, mrigal (Cirrhinus mrigala)(More)
Kinase-insert domain-containing receptor (KDR) is one of the important mediators of Vascular endothelial growth factor (VEGF) function in endothelial cells. Inhibition of KDR can be therapeutically advantageous for treatment of a number of diseases. The present study focuses on exploring novel KDR inhibitors by means of pharmaco-informatics methodologies.(More)
In response to double stranded RNA (dsRNA) viruses, toll-like receptor 3 (TLR3) in fish activates signaling like human, and induces innate immunity. This suggested the existence of dsRNA binding domains in fish TLR3 as reported in higher vertebrates. In in silico analysis, leucine rich repeat (LRR) regions (4-6, 13-14, 20-22), and LRR (8-15, 17-24) were(More)
Nucleotide binding and oligomerization domain (NOD2) is a key component of innate immunity that is highly specific for muramyl dipeptide (MDP)-a peptidoglycan component of bacterial cell wall. MDP recognition by NOD2-leucine rich repeat (LRR) domain activates NF-κB signaling through a protein-protein interaction between caspase activating and recruitment(More)
Scrutinizing various nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) genes in higher eukaryotes is very important for understanding the intriguing mechanism of the host defense against pathogens. The nucleotide-binding domain (NACHT), leucine-rich repeat (LRR), and pyrin domains (PYD)-containing protein 3 (Nalp3), is an intracellular(More)
Toll-like receptors (TLRs) are a class of innate immune receptors that sense pathogens or their molecular signatures and activate signaling cascades to induce a quick and non-specific immune response in the host. Among various types of TLRs, TLR22 is exclusively present in teleosts and amphibians and is expected to play the distinctive role in innate(More)
The nucleotide-binding oligomerization domain 1 (NOD1) receptor recognizes various pattern-associated structures of microbes through its leucine-rich repeat (LRR) domain and activates signaling cascades to induce innate immunity. This report describes the activation of NOD1 receptor signaling by gamma-D-glutamyl-meso-diaminopimelic acid (or γ-D-Glu-mDAP(More)