Bijinu Balakrishnan

Learn More
Monascus spp. produce several well-known polyketides such as monacolin K, citrinin, and azaphilone pigments. In this study, the azaphilone pigment biosynthetic gene cluster was identified through T-DNA random mutagenesis in Monascus purpureus. The albino mutant W13 bears a T-DNA insertion upstream of a transcriptional regulator gene (mppR1). The(More)
Citrinin (3) is a polyketide-derived mycotoxin, that is, produced by Monascus, Penicillium, and Aspergillus spp. and is a common contaminant in a number of agricultural products. ctPKS, a non-reducing type iterative polyketide synthase with a C-terminal reductive domain, is proposed to generate the polyketide backbone of 3. The targeted gene inactivation of(More)
To characterize a biosynthetic gene that is selectively involved in the biosynthesis of yellow or orange components in the azaphilone polyketide pathway of Monascus. A reductive modification is predicted to control the relative levels of reduced (yellow) and oxidized (orange and red) components in the pathway of azaphilone pigment biosynthesis in Monascus.(More)
Proteins in delimed tannery fleshings were fermentatively hydrolysed using Enterococcus faecium NCIM5335 and also hydrolysed using mild organic acids (formic acid and propionic acid). The liquor portion containing hydrolysed proteins was spray dried, in both the cases, to obtain a powder. The spray dried powder was evaluated for in vitro antioxidant(More)
Azaphilone polyketides are synthesized by iterative non-reducing fungal polyketide synthases (NR-fPKSs) with a C-terminus reductive domain (-R). Several azaphilone biosynthetic gene clusters contain a putative serine hydrolase gene; the Monascus azaphilone pigment (MAzP) gene cluster harbors mppD. The MAzP productivity was significantly reduced by a(More)
  • 1