Learn More
The adult mature fetal, but not immature fetal, lung is capable of actively transporting Na+ from the alveolar space. The reason for the impaired Na+ transport in the immature lung is not known; however, the apical membrane Na+ channel is the rate-limiting step for epithelial Na+ transport. This study determined whether transcripts coding for the adult rat(More)
To investigate the bioelectric properties on one of the cell types that line the distal lung unit, we isolated type II alveolar epithelium from 18- to 20-day gestation fetal rats (term = 22 days) and grew them on collagen-coated nitrocellulose filters. Amiloride impaired ion transport in a dose-dependent fashion (10(-4) to 10(-6) M) with 10(-4) M decreasing(More)
The rat amiloride-sensitive epithelial sodium channel (rENaC) is the rate-limiting step for vectorial transport of Na+ across tight epithelia. The complex is composed of three subunits, alpha, beta, and gamma. Expression of the subunits has been shown to be tissue-specific and developmentally and hormonally regulated. To study mechanisms involved in(More)
Glucocorticoid hormones play an important role in fetal lung maturation. It is unknown how they interact with changes in O2 tension, which play an important role in converting the lung from a fluid-secreting to a fluid-absorbing organ at birth. Airspace fluid absorption arises from active transepithelial Na+ transport with the amiloride-sensitive epithelial(More)
Cultured rat fetal distal lung epithelial cells (FDLEs), when switched from fetal (3%) to postnatal (21%) O2 concentrations, have increased epithelial Na+ channel (ENaC) mRNA levels and amiloride-sensitive Na+ transport [O. Pitkänen, A. K. Tanswell, G. Downey, and H. O'Brodovich. Am. J. Physiol. 270 (Lung Cell. Mol. Physiol. 14): L1060-L1066, 1996]. The(More)
Edema fluid (EF) increases epithelial Na(+) transport by rat fetal distal lung epithelia (FDLE) and induces net lung fluid absorption in fetal mouse lung explants [Rafii B, Gillie DJ, Sulowski C, Hannam V, Cheung T, Otulakowski G, Barker PM, O'Brodovich H. J Physiol (Lond) 544: 537-548, 2002]. We now show that EF increases fluid absorption across monolayers(More)
Fetal distal lung epithelial (FDLE) cells exposed to a postnatal O(2) concentration of 21% have higher epithelial Na(+) channel (ENaC) mRNA levels and Na(+) transport relative to FDLE cells grown in a fetal O(2) concentration of 3%. To investigate the mechanism of this process, FDLE monolayers were initially cultured in 3% O(2), and then some were switched(More)
Normal clearance of alveolar liquid following birth requires active Na transport; however, the contribution of Na channels, Na-H antiports, and Na-glucose symports is unknown. We demonstrated that intraalveolar instillation of amiloride (n = 6) or the more specific Na channel blockers benzamil (n = 13) or phenamil (n = 12) before the first breath impaired(More)
To determine if pulmonary oedema fluid (EF) alters ion and fluid transport of distal lung epithelium (DLE), EF was collected from rats in acute heart failure. EF, but not plasma, increased amiloride-insensitive short circuit current (I(sc)) and Na(+)-K(+) ATPase protein content and pump activity of DLE grown in primary culture. Inhibitors of Cl(-) transport(More)
We have previously shown that cardiogenic pulmonary edema fluid (EF) increases Na(+) and fluid transport by fetal distal lung epithelia (FDLE) (Rafii B, Gillie DJ, Sulowski C, Hannam V, Cheung T, Otulakowski G, Barker PM and O'Brodovich H. J Physiol 544: 537-548, 2002). We now report the effect of EF on Na(+) and fluid transport by the adult lung. We first(More)