Learn More
MicroRNAs (miRNAs) regulate gene expression by mediating gene silencing at transcriptional and post-transcriptional levels in higher plants. miRNAs and related target genes have been widely studied in model plants such as Arabidopsis and rice; however, the number of identified miRNAs in soybean (Glycine max) is limited, and global identification of the(More)
WRKY-type transcription factors are involved in multiple aspects of plant growth, development and stress response. WRKY genes have been found to be responsive to abiotic stresses; however, their roles in abiotic stress tolerance are largely unknown especially in crops. Here, we identified stress-responsive WRKY genes from wheat (Triticum aestivum L.) and(More)
Candida glabrata is a yeast pathogen of humans. We have established a tissue culture model to analyze the interaction of C. glabrata with macrophages. Transcript profiling of yeast ingested by macrophages reveals global changes in metabolism as well as increased expression of a gene family (YPS genes) encoding extracellular(More)
NAC transcription factors play important roles in plant growth, development and stress responses. Previously, we identified multiple NAC genes in soybean (Glycine max). Here, we identify the roles of two genes, GmNAC11 and GmNAC20, in stress responses and other processes. The two genes were differentially induced by multiple abiotic stresses and plant(More)
Receptor-like kinases (RLKs) play essential roles in plant growth, development and responses to environmental stresses. A putative RLK gene, OsSIK1, with extracellular leucine-rich repeats was cloned and characterized in rice (Oryza sativa). OsSIK1 exhibits kinase activity in the presence of Mn(2+), and the OsSIK1 kinase domain has the ability to(More)
MYB-type transcription factors contain the conserved MYB DNA-binding domain of approximately 50 amino acids and are involved in the regulation of many aspects of plant growth, development, metabolism and stress responses. From soybean plants, we identified 156 GmMYB genes using our previously obtained 206 MYB unigenes, and 48 were found to have full-length(More)
Plant-specific transcription factor NAC proteins play essential roles in many biological processes such as development, senescence, morphogenesis, and stress signal transduction pathways. In the NAC family, some members function as transcription activators while others act as repressors. In the present study we found that though the full-length GmNAC20 from(More)
BACKGROUND Soybean [Glycine max (L.) Merr.] is one of the most important crops for oil and protein resource. Improvement of stress tolerance will be beneficial for soybean seed production. PRINCIPAL FINDINGS Six GmPHD genes encoding Alfin1-type PHD finger protein were identified and their expressions differentially responded to drought, salt, cold and ABA(More)
The Hippo signalling pathway plays important roles in animal development, physiology and tumorigenesis. Understanding how the activity of this pathway is regulated by the cellular microenvironment remains a major challenge. Here we elucidate a molecular mechanism by which hypoxia deactivates Hippo signalling. We demonstrate that the E3 ubiquitin ligase(More)
MYB proteins play important roles in eukaryotic organisms. In plants, the R1R2R3-type MYB proteins function in cell cycle control. However, whether the R2R3-type MYB protein is also involved in the cell division process remains unknown. Here, we report that an R2R3-type transcription factor gene, AtMYB59, is involved in the regulation of cell cycle(More)