Bianka Janack

Learn More
Senescence processes are part of the plant developmental programme. They involve reprogramming of gene expression and are under the control of a complex regulatory network closely linked to other developmental and stress-responsive pathways. Recent evidence indicates that leaf senescence is regulated via epigenetic mechanisms. In the present review, the(More)
The barley gene HvS40, encoding a putative regulator of leaf senescence, is strongly induced during leaf senescence. As shown by chromatin immunoprecipitation, euchromatic histone modification H3K9ac is added at promoter close to ATG and coding sequence of HvS40 after onset of senescence. In parallel, level of heterochromatic H3K9me2 decreases at this gene.(More)
The plastid-nucleus located protein WHIRLY1 has been described as an upstream regulator of leaf senescence, binding to the promoter of senescence-associated genes like HvS40. To investigate the impact of WHIRLY1 on drought stress-induced, premature senescence, transgenic barley plants with an RNAi-mediated knockdown of the HvWHIRLY1 gene were grown under(More)
  • 1