Bianca Sclavi

Learn More
In most bacteria, the timing and synchrony of initiation of chromosomal replication are determined by the binding of the AAA(+) protein DnaA to a set of high- and low-affinity sites found within the origin of chromosomal replication (oriC). Despite the large amount of information on the role and regulation of DnaA, the actual structure of the DnaA-oriC(More)
Cellular adaptation to changing environmental conditions requires the coordinated regulation of expression of large sets of genes by global regulatory factors such as nucleoid associated proteins. Although in eukaryotic cells genomic position is known to play an important role in regulation of gene expression, it remains to be established whether in(More)
Focusing on the DNA-bridging nucleoid proteins Fis and H-NS, and integrating several independent experimental and bioinformatic data sources, we investigate the links between chromosomal spatial organization and global transcriptional regulation. By means of a novel multi-scale spatial aggregation analysis, we uncover the existence of contiguous clusters of(More)
The formation of a transcriptionally active complex by RNA polymerase involves a series of short-lived structural intermediates where protein conformational changes are coupled to DNA wrapping and melting. We have used time-resolved KMnO(4) and hydroxyl-radical X-ray footprinting to directly probe conformational signatures of these complexes at the T7A1(More)
BACKGROUND In Escherichia coli, overlapping rounds of DNA replication allow the bacteria to double in faster times than the time required to copy the genome. The precise timing of initiation of DNA replication is determined by a regulatory circuit that depends on the binding of a critical number of ATP-bound DnaA proteins at the origin of replication,(More)
Salamanders (urodela) have among the largest vertebrate genomes, ranging in size from 10 to over 80 pg. The urodela are divided into ten extant families each with a characteristic range in genome size. Although changes in genome size often occur randomly and in the absence of selection pressure, non‐random patterns of genome size variation are evident among(More)
Growing evidence suggests that many vertebrate lineages are evolving at significantly different rates. As a first approximation of evolutionary rates, we assessed the amount of neutral (dS) and non-neutral (dN) substitutions that have accumulated within and across sister clades since the time of their divergence. We found that in fish, tetraodontiformes(More)
The H-NS chromosome-organizing protein in E. coli can stabilize genomic DNA loops, and form oligomeric structures connected to repression of gene expression. Motivated by the link between chromosome organization, protein binding and gene expression, we analyzed publicly available genomic data sets of various origins, from genome-wide protein binding(More)
induced desorption of isolated polymer molecules from a planar wall. Frisbie. 2015. Label-free DNA sensing platform with low-voltage electrolyte-gated transistors. Persistent super-diffusive motion of Escherichia coli chromosomal loci. at the single-cell level using a microfluidic chemostat and time-lapse fluorescence microscopy.