Learn More
Oxidative stress and DNA damage have been implicated in the pathogenesis of renovascular hypertension induced by renal artery stenosis in the two-kidney, one-clip (2K1C) Goldblatt model. Considering our previous report indicating that the chronic blockade of phosphodiesterase 5 with sildenafil (Viagra®) has marked beneficial effects on oxidative stress and(More)
The clipping of an artery supplying one of the two kidneys (2K1C) activates the renin-angiotensin (Ang) system (RAS), resulting in hypertension and endothelial dysfunction. Recently, we demonstrated the intrarenal beneficial effects of sildenafil on the high levels of Ang II and reactive oxygen species (ROS) and on high blood pressure (BP) in 2K1C mice.(More)
Stem cells of intensely regenerative tissues are susceptible to cellular damage. Although the response to this process in hematopoietic stem cells (HSCs) is crucial, the mechanisms by which hematopoietic homeostasis is sustained are not completely understood. Aging increases reactive oxygen species (ROS) levels and inflammation, which contribute to(More)
Recent evidence from apolipoprotein E-deficient (apoE-/-) mice shows that aging and atherosclerosis are closely associated with increased oxidative stress and DNA damage in some cells and tissues. However, bone marrow cells, which are physiologically involved in tissue repair have not yet been investigated. In the present study, we evaluated the influence(More)
BACKGROUND Recent studies have highlighted the potential of cell therapy for atherosclerosis. The aim of this study was to evaluate the effects of mononuclear cell (MNC) therapy on the development of atherosclerotic lesions in the apolipoprotein E knockout (apoE KO) mouse. METHODS We investigated vascular lipid deposition, vascular remodeling, oxidative(More)
Stem/progenitor cell-based therapy has successfully been used as a novel therapeutic strategy for vascular diseases triggered by endothelial dysfunction. The aim of this study was to investigate the effects of mononuclear cell (MNC) therapy in situ on carotid cuff-induced occlusive thrombus in the apolipoprotein E knockout (apoE-/-) mouse. Spleen-derived(More)
Angiotensin II (Ang II), which plays a pivotal role in the pathophysiology of the two-kidney, one-clip (2K1C) Goldblatt hypertension, has been associated with augmented generation of reactive oxygen species (ROS) in some cells and tissues. In the present study, we evaluated the influence of 2K1C hypertension on oxidative stress, DNA fragmentation, and(More)
It is well known that enhanced production of reactive oxygen species (ROS) leads to oxidative stress observed in atherosclerosis and that ROS can also cause damage in cellular macromolecules, including DNA. Considering previous report that sildenafil, an inhibitor of phosphodiesterase 5 (PDE5), has antioxidant effects, in the present study we evaluated the(More)
Mouse models provide powerful tools for studying the mechanisms underlying the dysfunction of the autonomic reflex control of cardiovascular function and those involved in cardiovascular diseases. The established murine model of two-kidney, one-clip (2K1C) angiotensin II-dependent hypertension represents a useful tool for studying the neural control of(More)
In translational medicine, the discovery of new drugs or new potential uses for currently available drugs is crucial for treating the resistant hypertension associated with renal artery stenosis. The phosphodiesterase 5 inhibitor sildenafil has been shown to reduce blood pressure and to improve the endothelium-dependent relaxation in the two kidney, one(More)