Learn More
In this paper we present one method for segmenting the lungs and three methods to segment pulmonary lobes from thoracic CT images and their application to the LOLA11 challenge data. The lung segmenta-tion procedure is fully automated and uses a sequence of morphological operations to refine an initial threshold-based segmentation of the pulmonary airspaces.(More)
The malignancy of lung nodules is most often detected by analyzing changes of the nodule diameter in follow-up scans. A recent study showed that comparing the volume or the mass of a nodule over time is much more significant than comparing the diameter. Since the survival rate is higher when the disease is still in an early stage it is important to detect(More)
Lobewise analysis of the pulmonary parenchyma is of clinical relevance for diagnosing and monitoring pathologies. In this work, a fully automatic lobe segmentation approach is presented, which is based on a previously proposed watershed transformation approach. The proposed extension explicitly considers the pulmonary fissures by including them in the cost(More)
Segmentation of the pulmonary lobes is relevant in clinical practice and particularly challenging for cases with severe diseases or incomplete fissures. In this work, an automated segmentation approach is presented that performs a marker-based watershed transformation on computed tomography (CT) scans to subdivide the lungs into lobes. A cost image for the(More)
PURPOSE Computed tomography (CT) imaging is the modality of choice for lung cancer diagnostics. With the increasing number of lung interventions on sublobar level in recent years, determining and visualizing pulmonary segments in CT images and, in oncological cases, reliable segment-related information about the location of tumors has become increasingly(More)
  • 1