Learn More
Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, employ a type III secretion system to deliver effector proteins across the bacterial cell. In EPEC, four proteins are known to be exported by a type III secretion system_EspA, EspB and EspD required for subversion of host cell signal transduction pathways and a translocated intimin(More)
Pseudomonas aeruginosa produces abundant levels of rhamnolipid biosurfactants which exhibit remarkable chemical and physical characteristics, making these compounds attractive targets for biotechnology research. The complex gene regulation network involved in rhamnolipids' biosynthesis represents a challenge to industrial production, which has been the(More)
Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, use a type III secretion system to deliver effector proteins across the bacterial cell wall. In EPEC, four proteins, EspA, EspB, EspD and Tir are known to be exported by a type III secretion system and to be essential for 'attaching and effacing' (A/E) lesion formation, the hallmark of(More)
Rhamnolipids have emerged as a very promising class of biosurfactants in the last decades, exhibiting properties of great interest in several industrial applications, and have represented a suitable alternative to chemically-synthesized surfactants. This class of biosurfactants has been extensively studied in recent years, aiming at their large-scale(More)
Serovars of a total of 5,490 Salmonella strains isolated during the period of 1991-95, from human infections (2,254 strains) and from non-human materials (3,236 strains) were evaluated. In the studied period, 81 different serovars were determined among human isolates. Salmonella Enteritidis corresponded to 1.2% in 1991, 2% in 1992, 10.1% in 1993, 43.3% in(More)
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli are extracellular pathogens that employ a type III secretion system to export translocator and effector proteins, proteins which facilitates colonization of the mucosal surface of the intestine via formation of attaching and effacing (A/E) lesions. The genes encoding the proteins for A/E(More)
Re-emergence of vector-borne diseases such as dengue and yellow fever, which are both transmitted by the Aedes aegypti mosquito, has been correlated with insecticide resistance. P-glycoproteins (P-gps) are ATP-dependent efflux pumps that are involved in the transport of substrates across membranes. Some of these proteins have been implicated in multidrug(More)
Mice infected with Citrobacter rodentium represent an excellent model in which to examine immune defenses against an attaching-effacing enteric bacterial pathogen. Colonic tissue from mice infected with C. rodentium harbors increased transcripts for IL-12 and IFN-gamma and displays mucosal pathology compared with uninfected controls. In this study, the role(More)
The features of Helicobacter pylori antibiotic resistance in Lisbon from 1990 to 1999 were studied. Overall resistance rates to amoxycillin, tetracycline, metronidazole, clarithromycin and ciprofloxacin were 0, 0, 30.6, 19.0 and 9.6%, respectively. The incidence of resistance to clarithromycin was much higher in isolates from children (44.8%) than adults(More)
Burkholderia kururiensis is a diazotrophic bacterium originally isolated from a polluted aquifer environment and presents a high level of similarity with the rice endophyte "B. brasilensis" species. This work assessed the ability of B. kururiensis to endophytically colonize rice plantlets by monitoring different tissues of root-inoculated plants for the(More)