Learn More
The activity of ribose-5-phosphate isomerases (RpiB) from Clostridium difficile for d-ribose isomerization was optimal at pH 7.5 and 40°C, while that from Thermotoga maritima for l-talose isomerization was optimal at pH 8.0 and 70°C. C. difficile RpiB exhibited activity only with aldose substrates possessing hydroxyl groups oriented in the right-handed(More)
The recombinant β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus was purified with a specific activity of 330 U/mg for genistin by His-trap chromatography. The specific activity of the purified enzyme followed the order genistin > daidzin > glycitin> malonyl glycitin > malonyl daidzin > malonyl genistin. The hydrolytic activity for(More)
The optimal reaction conditions for the conversion of oleic acid to 10-hydroxystearic acid by whole cells of Stenotrophomonas nitritireducens were: pH 7.5, 35°C, 0.05% (w/v) Tween 80, 20 g cells l−1, and 30 g oleic acid l−1 in an anaerobic atmosphere. Under these conditions, the cells produced 31.5 g 10-hydroxystearic acid l−1 over 4 h with a conversion(More)
An uncharacterized gene from Thermus thermophilus, thought to encode a mannose-6-phosphate isomerase, was cloned and expressed in Escherichia coli. The maximal activity of the recombinant enzyme for L-ribulose isomerization was observed at pH 7.0 and 75°C in the presence of 0.5 mM Cu(2+). Among all of the pentoses and hexoses evaluated, the enzyme exhibited(More)
The specific activity of a recombinant β-glucosidase from Sulfolobus solfataricus for isoflavones was: daidzin > glycitin > genistin > malonyl genistin > malonyl daidzin > malonyl glycitin. The hydrolytic activity of this enzyme for daidzin was highest at pH 5.5 and 90°C with a half-life of 18 h, a K m of 0.5 mM, and a k cat of 2532 s−1. The enzyme(More)
A recombinant enzyme from Lysinibacillus fusiformis was expressed, purified, and identified as an oleate hydratase because the hydration activity of the enzyme was the highest for oleic acid (with a k cat of 850 min−1 and a K m of 540 μM), followed by palmitoleic acid, γ-linolenic acid, linoleic acid, myristoleic acid, and α-linolenic acid. The optimal(More)
Aspergillus oryzae KACC 40247 was selected from among 60 fungal strains as an effective 7,8,4'-trihydroxyisoflavone (8-hydroxydaidzein)-producing fungus. The optimal culture conditions for production by this strain in a 7-L fermentor were found to be 30 °C, pH 6, and 300 rpm. Under these conditions, A. oryzae KACC 40247 produced 62 mg/L of 8-hydroxydaidzein(More)
  • 1