Learn More
BACKGROUND Synthetic genomic approaches offer unique opportunities to use powerful yeast and Escherichia coli genetic systems to assemble and modify chromosome-sized molecules before returning the modified DNA to the target host. For example, the entire 1 Mb Mycoplasma mycoides chromosome can be stably maintained and manipulated in yeast before being(More)
Engineering zinc finger protein motifs for specific DNA targets in genomes is critical in the field of genome engineering. We have developed a computational method for predicting recognition helices for C2H2 zinc fingers that bind to specific target DNA sites. This prediction is based on artificial neural network using an exhaustive dataset of zinc finger(More)
  • 1