Learn More
Multidrug resistance is the most widely exploited phenomenon by which cancer eludes chemotherapy. Broad variety of factors, ranging from the cellular ones, such as over-expression of efflux transporters, defective apoptotic machineries, and altered molecular targets, to the physiological factors such as higher interstitial fluid pressure, low extracellular(More)
To develop a multifunctional nanoparticle system carrying a combination of pro-apoptotic drug, NCL-240, TRAIL [tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand] and anti-survivin siRNA and to test the combination preparation for anti-cancer effects in different cancer cells. Polyethylene glycol-phosphoethanolamine (PEG-PE) – based polymeric(More)
Bhushan S. Pattni,† Vladimir V. Chupin,‡ and Vladimir P. Torchilin*,†,§,∥ †Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States ‡Laboratory for Advanced Studies of Membrane Proteins, Moscow Institute of Physics and Technology, Dolgoprudny 141700,(More)
To develop transferrin (Tf)-targeted delivery systems for the pro-apoptotic drug, NCL-240, and to evaluate the efficacy of this delivery system in ovarian cancer NCI/ADR-RES cells, grown in vitro in a 3D spheroid model. Tf-targeted PEG-PE-based micellar and ePC/CHOL-based liposomal delivery systems for NCL-240 were prepared. NCI/ADR-RES cells were used to(More)
This work aimed to develop solid lipid nanoparticles (SLN) co-loaded with doxorubicin and α-tocopherol succinate (TS) and to evaluate its potential to overcome drug resistance and to increase antitumoral effect in MCF-7/Adr and NCI/Adr cancer cell lines. The SLN were prepared by a hot homogenization method and characterized for size, zeta potential,(More)
  • 1