Bhranti S. Shah

Learn More
Fibroblasts are ubiquitous cells that demonstrate remarkable diversity. However, their origin and pathways of differentiation remain poorly defined. Here, we show that connective tissue growth factor (CTGF; also known as CCN2) is sufficient to induce human bone marrow mesenchymal stem/stromal cells (MSCs) to differentiate into fibroblasts. CTGF-stimulated(More)
Long-term labeling of stem cells during self-replication and differentiation benefits investigations of development and tissue regeneration. We report the labeling of human mesenchymal stem cells (hMSCs) with RGD-conjugated quantum dots (QDs) during self-replication, and multilineage differentiations into osteogenic, chondrogenic, and adipogenic cells.(More)
Quantum dots (QDs) are semiconductor nanocrystals, and recently they have been shown as effective probes for cell labeling. Due to their unique spectral, physical, and chemical properties, QDs can concurrently tag multiple intercellular and intracellular components of live cells for time ranging from seconds to months. Different color QDs can label(More)
Focal adipose deficiency, such as lipoatrophy, lumpectomy or facial trauma, is a formidable challenge in reconstructive medicine, and yet scarcely investigated in experimental studies. Here, we report that Pyrintegrin (Ptn), a 2,4-disubstituted pyrimidine known to promote embryonic stem cells survival, is robustly adipogenic and induces postnatal adipose(More)
Some anti-convulsant drugs have a calming effect that may potentially be used to reduce cigarette smoking. A cross-sectional study, including all 100 psychiatric in-service patients receiving various anti-convulsant drugs and their age- and sex-matched controls, was done. The intensity of their daily cigarette smoking and their body weights were recorded.(More)
Quantum dots (QDs) are semiconductor nanocrystals that serve as promising alternatives to organic dyes for cell labeling. Because of their unique spectral, physical and chemical properties, QDs are useful for concurrently monitoring several intercellular and intracellular interactions in live normal cells and cancer cells over periods ranging from less than(More)
A critical barrier in tissue regeneration is scale-up. Bioengineered adipose tissue implants have been limited to ∼10  mm in diameter. Here, we devised a 40-mm hybrid implant with a cellular layer encapsulating an acellular core. Human adipose-derived stem cells (ASCs) were seeded in alginate. Poly(ethylene)glycol-diacrylate (PEGDA) was photopolymerized(More)
Dynamic hydrostatic pressure (HP) loading can modulate nucleus pulposus (NP) cell metabolism, extracellular matrix (ECM) composition and induce transformation of notochordal NP cells into mature phenotype. However, the effects of varying cell density and dynamic HP magnitude on NP phenotype and metabolism are unknown. This study examined the effects of(More)
From its inception, tissue engineering has had three tenets: cells, biomaterial scaffolds and signaling molecules. Among the triad, cells are the center piece, because cells are the building blocks of tissues. For decades, cell therapies have focused on the procurement, manipulation and delivery of healthy cells for the treatment of diseases or trauma.(More)
  • 1