Learn More
Most state-of-the-art action feature extractors involve differential operators, which act as highpass filters and tend to attenuate low frequency action information. This attenuation introduces bias to the resulting features and generates ill-conditioned feature matrices. The Gaussian Pyramid has been used as a feature enhancing technique that encodes(More)
This paper presents a family of probabilistic latent variable models that can be used for analysis of nonnegative data. We show that there are strong ties between nonnegative matrix factorization and this family, and provide some straightforward extensions which can help in dealing with shift invariances, higher-order decompositions and sparsity(More)
Sphinx-4 is a flexible, modular and pluggable framework to help foster new innovations in the core research of hidden Markov model (HMM) recognition systems. The design of Sphinx-4 is based on patterns that have emerged from the design of past systems as well as new requirements based on areas that researchers currently want to explore. To exercise this(More)
In this paper we describe a methodology for model-based single channel separation of sounds. We present a sparse latent variable model that can learn sounds based on their distribution of time/frequency energy. This model can then be used to extract known types of sounds from mixtures in two scenarios. One being the case where all sound types in the mixture(More)
We present a technique for denoising speech using nonnegative matrix factorization (NMF) in combination with statistical speech and noise models. We compare our new technique to standard NMF and to a state-of-the-art Wiener filter implementation and show improvements in speech quality across a range of interfering noise types.
In this paper we describe a model developed for the analysis of acoustic spectra. Unlike decom-positions techniques that can result in difficult to interpret results this model explicitly models spectra as distributions and extracts sets of additive and semantically useful components that facilitate a variety of applications ranging from source separation,(More)
In this paper, we propose a new supervised monaural source separation based on autoencoders. We employ the autoencoder for the dictionary training such that the nonlinear network can encode the target source with high expressiveness. The dictionary is trained by each target source without the mixture signal, which makes the system independent from the(More)
A critically important component of most signal processing procedures is that of computing the distance between signals. In multiparty processing applications where these signals belong to different parties, this introduces privacy challenges. The signals may themselves be private, and the parties to the computation may not be willing to expose them.(More)
In this paper we describe approaches for discovering acoustic concepts and relations in text. The first major goal is to be able to identify text phrases which contain a notion of audibility and can be termed as a sound or an acoustic concept. We also propose a method to define an acoustic scene through a set of sound concepts. We use pattern matching and(More)