Learn More
Calcium (Ca²⁺) regulates several signalling pathways involved in growth, development and stress tolerance. Cellular Ca²⁺ homeostasis is achieved by the combined action of channels, pumps and antiporters, but direct evidence for a role of Ca²⁺ATPase pumps in stress tolerance is lacking. Here we report the characterization of a Ca²⁺ ATPase gene (OsACA6) from(More)
The EPSPS, EC 2.5.1.19 (5-enolpyruvylshikimate −3-phosphate synthase) is considered as one of the crucial enzyme in the shikimate pathway for the biosynthesis of essential aromatic amino acids and secondary metabolites in plants, fungi along with microorganisms. It is also proved as a specific target of broad spectrum herbicide glyphosate. On the basis of(More)
To overcome the salinity-induced loss of crop yield, a salinity-tolerant trait is required. The SUV3 helicase is involved in the regulation of RNA surveillance and turnover in mitochondria, but the helicase activity of plant SUV3 and its role in abiotic stress tolerance have not been reported so far. Here we report that the Oryza sativa (rice) SUV3 protein(More)
To explore the adaptability of bread wheat to dehydration stress, we screened 28 cultivars collected from different agroclimatic zones, on the basis of malonaldehyde content as biochemical marker in roots of wheat seedlings during germination and classified them as highly tolerant, tolerant, sensitive and highly sensitive. From this primary screening, ten(More)
The p68, a prototypic member of DEAD-box protein family, is involved in pre-mRNA splicing, RNA-induced silencing and transcription regulation. However, the role of plant p68 in stress tolerance and molecular targets responsible for this has not been reported. Here, we report the isolation and characterization of salinity-induced pea p68 (Psp68). The(More)
Recent reports have underlined the potential of gamma (γ)-rays as tools for seed priming, a process used in seed industry to increase seed vigor and to enhance plant tolerance to biotic/abiotic stresses. However, the impact of γ -rays on key aspects of plant metabolism still needs to be carefully evaluated. In the present study, rice seeds were challenged(More)
The myeloblastosis oncogenes (MYB) are one of the important transcription factors that facilitate induction of various developmental and stress responsive genes. They are hence, emerging as key players in improving stress tolerance of plants in response to several abiotic stresses. Therefore, isolation and characterization of these genes, development of(More)
Soil salinity problems are widespread around the globe with increased risk of spreading over the years. The fungus Piriformospora indica, identified in Indian Thar desert, colonizes the roots of monocotyledon plants and provides resistance towards biotic as well as abiotic stress conditions. We have identified a cyclophilin A-like protein from P. indica(More)
Dipeptide (Leu-Leu) and nitrate transport activities of 26 Arabidopsis NPF (NRT1/PTR Family) proteins were screened in Saccharomyces cerevisiae and Xenopus laevis oocytes, respectively. Dipeptide transport activity has been confirmed for 2 already known dipeptide transporters (AtNPF8.1 and AtNPF8.3) but none of the other tested NPFs displays dipeptide(More)
Osmotic stress induced by dehydration and salinity, is among the major abiotic stresses that adversely impacts crop productivity and plants often display cultivar-dependent response against osmotic imbalance. To better understand the molecular mechanisms underlying differential responses to dehydration, transcriptome changes of two contrasting wheat(More)