Bharath Hariharan

Learn More
We aim to detect all instances of a category in an image and, for each instance, mark the pixels that belong to it. We call this task Simultaneous Detection and Segmentation (SDS). Unlike classical bounding box detection, SDS requires a segmentation and not just a box. Unlike classical semantic segmentation, we require individual object instances. We build(More)
Recognition algorithms based on convolutional networks (CNNs) typically use the output of the last layer as a feature representation. However, the information in this layer may be too coarse spatially to allow precise localization. On the contrary, earlier layers may be precise in localization but will not capture semantics. To get the best of both worlds,(More)
Object detection has over the past few years converged on using linear SVMs over HOG features. Training linear SVMs however is quite expensive, and can become intractable as the number of categories increase. In this work we revisit a much older technique, viz. Linear Discriminant Analysis, and show that LDA models can be trained almost trivially, and with(More)
We study the challenging problem of localizing and classifying category-specific object contours in real world images. For this purpose, we present a simple yet effective method for combining generic object detectors with bottom-up contours to identify object contours. We also provide a principled way of combining information from different part detectors(More)
We address the problem of segmenting and recognizing objects in real world images, focusing on challenging articulated categories such as humans and other animals. For this purpose, we propose a novel design for region-based object detectors that integrates efficiently top-down information from scanning-windows part models and global appearance cues. Our(More)
We propose a max-margin formulation for the multi-label classification problem where the goal is to tag a data point with a set of pre-specified labels. Given a set of L labels, a data point can be tagged with any of the 2 possible subsets. The main challenge therefore lies in optimising over this exponentially large label space subject to label(More)
We formalize the problem of program verification as a learning problem, showing that invariants in program verification can be regarded as geometric concepts in machine learning. Safety properties define bad states: states a program should not reach. Program verification explains why a program’s set of reachable states is disjoint from the set of bad(More)
Existing object proposal approaches use primarily bottom-up cues to rank proposals, while we believe that "objectness" is in fact a high level construct. We argue for a data-driven, semantic approach for ranking object proposals. Our framework, which we call DeepBox, uses convolutional neural networks (CNNs) to rerank proposals from a bottom-up method. We(More)
When building artificial intelligence systems that can reason and answer questions about visual data, we need diagnostic tests to analyze our progress and discover shortcomings. Existing benchmarks for visual question answering can help, but have strong biases that models can exploit to correctly answer questions without reasoning. They also conflate(More)
Existing methods for pixel-wise labelling tasks generally disregard the underlying structure of labellings, often leading to predictions that are visually implausible. While incorporating structure into the model should improve prediction quality, doing so is challenging - manually specifying the form of structural constraints may be impractical and(More)