Learn More
Microglia, brain immune cells, engage in the clearance of dead cells or dangerous debris, which is crucial to the maintenance of brain functions. When a neighbouring cell is injured, microglia move rapidly towards it or extend a process to engulf the injured cell. Because cells release or leak ATP when they are stimulated or injured, extracellular(More)
INTRODUCTION Although activation of A3 adenosine receptors attenuates reperfusion lung injury and associated apoptosis, the signaling pathway that mediates this protection remains unclear. Adenosine agonists activate mitogen-activated protein kinases, and these kinases have been implicated in ischemia/reperfusion injury; the purpose of this study was(More)
The aim of this study was to examine a possible role for extracellular pyrimidines as inotropic factors for the heart. First, nucleotide plasma levels were measured to evaluate whether UTP is released in patients with coronary heart disease. Then, inotropic effects of pyrimidines were examined in isolated mouse cardiomyocytes. Finally, expression of(More)
A known selective agonist of the A(3) adenosine receptors (AR), MRS1898 [(1'R,2'R,3'S,4'R,5'S)-4-{2-chloro-6-[(3-iodophenylmethyl)amino]purin-9-yl}-1-(methylaminocarbonyl)bicyclo[3.1.0]hexane-2,3-diol], was synthesized in radioactive form and characterized pharmacologically. This agonist ligand series, based on nucleoside analogues containing a rigid,(More)
  • 1