Bevil R. Conway

Learn More
The spatial structure of color cell receptive fields is controversial. Here, spots of light that selectively modulate one class of cones (L, M, or S, or loosely red, green, or blue) were flashed in and around the receptive fields of V-1 color cells to map the spatial structure of the cone inputs. The maps generated using these cone-isolating stimuli and an(More)
Imaging studies are consistent with the existence of brain regions specialized for color, but electrophysiological studies have produced conflicting results. Here we address the neural basis for color, using targeted single-unit recording in alert macaque monkeys, guided by functional magnetic resonance imaging (fMRI) of the same subjects. Distributed(More)
Color has become a premier model system for understanding how information is processed by neural circuits, and for investigating the relationships among genes, neural circuits, and perception. Both the physical stimulus for color and the perceptual output experienced as color are quite well characterized, but the neural mechanisms that underlie the(More)
Internalization and transport of a ligand-receptor complex are required to initiate cell body responses to target-derived neurotrophin. However, it is not known whether internalized receptors and cell surface receptors initiate the same signaling pathways and biological responses. Here we use a temperature-sensitive mutant of dynamin (G273D) to control the(More)
Neurons in the lateral geniculate nucleus cannot perform the spatial color calculations necessary for color contrast and color constancy. Under neutral-adapting conditions, we mapped the cone inputs (L, M, and S) to 83 cone-opponent cells representing the central visual field of the next stage of visual processing, primary visual cortex (V1), to determine(More)
Visual area V4 is a midtier cortical area in the ventral visual pathway. It is crucial for visual object recognition and has been a focus of many studies on visual attention. However, there is no unifying view of V4's role in visual processing. Neither is there an understanding of how its role in feature processing interfaces with its role in visual(More)
Most people see movement in Figure 1, although the image is static. Motion is seen from black --> blue --> white --> yellow --> black. Many hypotheses for the illusory motion have been proposed, although none have been tested physiologically. We found that the illusion works well even if it is achromatic: yellow is replaced with light gray, and blue is(More)
The primate visual system is arranged hierarchically, starting from the retina and continuing through a series of extrastriate visual areas. Selectivity for motion is first found in individual neurons in the primate visual cortex (V1), in which many simple cells respond selectively to the direction and speed of moving stimuli. Beyond simple cells, most(More)
The contribution that different brain areas make to primate color vision, especially in the macaque, is debated. Here we used functional magnetic resonance imaging in the alert macaque, giving a whole brain perspective of color processing in the healthy brain. We identified color-biased and luminance-biased activity and color-afterimage activity.(More)
'The dress' is a peculiar photograph: by themselves the dress' pixels are brown and blue, colors associated with natural illuminants, but popular accounts (#TheDress) suggest the dress appears either white/gold or blue/black. Could the purported categorical perception arise because the original social-media question was an alternative-forced-choice? In a(More)