Learn More
The construction of customized nucleic acid sequences allows us to have greater flexibility in gene design for recombinant protein expression. Among the various parameters considered for such DNA sequence design, individual codon usage (ICU) has been implicated as one of the most crucial factors affecting mRNA translational efficiency. However, previous(More)
Constraint-based flux analysis of metabolic network model quantifies the reaction flux distribution to characterize the state of cellular metabolism. However, metabolites are key players in the metabolic network and the current reaction-centric approach may not account for the effect of metabolite perturbation on the cellular physiology due to the inherent(More)
Flux balance analysis (FBA) is a widely used computational method for characterizing and engineering intrinsic cellular metabolism. The increasing number of its successful applications and growing popularity are possibly attributable to the availability of specific software tools for FBA. Each tool has its unique features and limitations with respect to(More)
The human interferon-gamma (IFN-γ) is a potential drug candidate for treating various diseases due to its immunomodulatory properties. The efficient production of this protein can be achieved through a popular industrial host, Chinese hamster ovary (CHO) cells. However, recombinant expression of foreign proteins is typically suboptimal possibly due to the(More)
Cofactors, such as NAD(H) and NADP(H), play important roles in energy transfer within the cells by providing the necessary redox carriers for a myriad of metabolic reactions, both anabolic and catabolic. Thus, it is crucial to establish the overall cellular redox balance for achieving the desired cellular physiology. Of several methods to manipulate the(More)
Various isoforms of invertases from prokaryotes, fungi, and higher plants has been expressed in Escherichia coli, and codon optimisation is a widely-adopted strategy for improvement of heterologous enzyme expression. Successful synthetic gene design for recombinant protein expression can be done by matching its translational elongation rate against(More)
SUMMARY Codon optimization has been widely used for designing synthetic genes to improve their expression in heterologous host organisms. However, most of the existing codon optimization tools consider a single design criterion and/or implement a rather rigid user interface to yield only one optimal sequence, which may not be the best solution. Hence, we(More)
Rational design of microbial strains for enhanced cellular physiology through in silico analysis has been reported in many metabolic engineering studies. Such in silico techniques typically involve the analysis of a metabolic model describing the metabolic and physiological states under various perturbed conditions, thereby identifying genetic targets to be(More)
Antibacterial drug discovery is moving from largely unproductive high-throughput screening of isolated targets in the past decade to revisiting old, clinically validated targets and drugs, and to classical black-box whole-cell screens. At the same time, due to the application of existing methods and the emergence of new high-throughput biology methods, we(More)
Pichia yeasts have been recognized as important microbial cell factories in the biotechnological industry. Notably, the Pichia pastoris and Pichia stipitis species have attracted much research interest due to their unique cellular physiology and metabolic capability: P. pastoris has the ability to utilize methanol for cell growth and recombinant protein(More)