Betty M. Tijms

Learn More
The characterization of gray matter morphology of individual brains is an important issue in neuroscience. Graph theory has been used to describe cortical morphology, with networks based on covariation of gray matter volume or thickness between cortical areas across people. Here, we extend this research by proposing a new method that describes the gray(More)
We present a simulation framework, called NETMORPH, for the developmental generation of 3D large-scale neuronal networks with realistic neuron morphologies. In NETMORPH, neuronal morphogenesis is simulated from the perspective of the individual growth cone. For each growth cone in a growing axonal or dendritic tree, its actions of elongation, branching and(More)
IMPORTANCE Cerebral amyloid-β aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies. OBJECTIVE To use individual participant data meta-analysis(More)
Both gray matter atrophy and disruption of functional networks are important predictors for physical disability and cognitive impairment in multiple sclerosis (MS), yet their relationship is poorly understood. Graph theory provides a modality invariant framework to analyze patterns of gray matter morphology and functional coactivation. We investigated, how(More)
Grey matter atrophy is common in multiple sclerosis. However, in contrast with other neurodegenerative diseases, it is unclear whether grey matter atrophy in multiple sclerosis is a diffuse 'global' process or develops, instead, according to distinct anatomical patterns. Using source-based morphometry we searched for anatomical patterns of co-varying(More)
The interrelationships between pathological processes and emerging clinical phenotypes in Alzheimer's disease (AD) are important yet complicated to study, because the brain is a complex network where local disruptions can have widespread effects. Recently, properties in brain networks obtained with neuroimaging techniques have been studied in AD with tools(More)
Early-onset Alzheimer's disease (AD) patients present a different clinical profile than late-onset AD patients. This can be partially explained by cortical atrophy, although brain organization might provide more insight. The aim of this study was to examine functional connectivity in early-onset and late-onset AD patients. Resting-state fMRI scans of 20(More)
We studied whether electroencephalography (EEG)-derived measures of brain oscillatory activity are related to clinical progression in nondemented, amyloid positive subjects. We included 205 nondemented amyloid positive subjects (63 subjective cognitive decline [SCD]; 142 mild cognitive impairment [MCI]) with a baseline resting-state EEG data and ≥1-year(More)
Gray matter networks are disrupted in Alzheimer's disease (AD). It is unclear when these disruptions start during the development of AD. Amyloid beta 1-42 (Aβ42) is among the earliest changes in AD. We studied, in cognitively healthy adults, the relationship between Aβ42 levels in cerebrospinal fluid (CSF) and single-subject cortical gray matter network(More)