Betty H. C. Cheng

Learn More
Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee (Dagstuhl Seminar Organizer Authors) Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna Di Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger Kienle, Jeff Kramer, Marin Litoiu, Sam(More)
Interest in adaptive computing systems has increased dramatically in the past few years, and a variety of techniques now allow software to adapt dynamically to its environment. Compositional adaptation enables software to modify its structure and behavior dynamically in response to change in its execution environment. A review of current technology compares(More)
In this paper, we review current requirements engineering (RE) research and identify future research directions suggested by emerging software needs. First, we overview the state of the art in RE research. The research is considered with respect to technologies developed to address specific requirements tasks, such as elicitation, modeling, and analysis.(More)
Embedded systems are pervasive and frequently used for critical systems with time-dependent functionality. Dwyer <i>et al</i> have developed qualitative specification patterns to facilitate the specification of critical properties, such as those that must be satisfied by embedded systems. Thus far, no analogous repository has been compiled for real-time(More)
Self-adaptive systems have the capability to autonomously modify their behavior at run-time in response to changes in their environment. Self-adaptation is particularly necessary for applications that must run continuously, even under adverse conditions and changing requirements; sample domains include automotive systems, telecommunications, and(More)
Dynamically adaptive systems (DASs) are intended to monitor the execution environment and then dynamically adapt their behavior in response to changing environmental conditions. The uncertainty of the execution environment is a major motivation for dynamic adaptation; it is impossible to know at development time all of the possible combinations of(More)
Self-adaptive systems have the capability to autonomously modify their behaviour at run-time in response to changes in their environment. Self-adaptation is particularly necessary for applications that must run continuously, even under adverse conditions and changing requirements; sample domains include automotive systems, telecommunications, and(More)