Learn More
Biological soil crusts (biocrusts) are ubiquitous living covers in arid and semiarid regions, playing a critical role in soil erosion control in semiarid regions. So far, research separating the multiple mechanisms of erosion control by biocrusts has been limited. It was problematic to link the influence of biocrusts to existing erosion models. In the(More)
Biological soil crusts (BSCs) are found in all dryland regions of the world, including the polar regions. They are also known to occur in the southern African region. Although there were a number of case studies on BSCs from that region, we did not know if they are a normal part of the vegetation cover or just a phenomenon that occasionally occurs here and(More)
Biological soil crusts (BSCs) are communities of cryptogamic organisms, occurring in arid and semiarid regions all over the world. Based on both morphological identification and genetic analyses, we established a first cyanobacterial inventory using the biphasic approach for BSCs within two major biomes of southern Africa. The samples were collected at two(More)
Here we report details of the European research initiative “Soil Crust International” (SCIN) focusing on the biodiversity of biological soil crusts (BSC, composed of bacteria, algae, lichens, and bryophytes) and on functional aspects in their specific environment. Known as the so-called “colored soil lichen community” (Bunte Erdflechtengesellschaft), these(More)
The receptor for advanced glycation end-products (RAGE) and its soluble forms are predominantly expressed in lung but its physiological importance in this organ is not yet fully understood. Since RAGE acts as a cell adhesion molecule, we postulated its physiological importance in the respiratory mechanics. Respiratory function in a buffer-perfused isolated(More)
The Soil Crust International project aims to better understand the functioning of biological soil crust environments (BSC) in Europe in order to understand the importance of these ecosystems. The final objective of this project is to inform and strengthen protection strategies for these types of habitats in the frame of the European Union. To achieve this,(More)
Facilitative effects and plant–plant interactions are well known for higher plants, but there is a lack of information about their relevance in cryptogams. Additional information about facilitative effects between bryophytes and lichens would be an important contribution to recent research on positive plant–plant interactions, as these can have striking(More)
Intravital multiphoton microscopy is a powerful tool to study kidney physiology in living animals. However, certain technical issues have curbed its usage to date, including limited depth of tissue penetration and high background emission of endogenous signals. Most previous studies have used the excitation range 700–1000 nm. Since newer longer wavelength(More)
The two endolithic lichen species Hymenelia prevostii and Hymenelia coerulea were investigated with regard to their thallus morphology and their effects on the surrounding substrate. The physiological processes responsible for the observed alterations of the rock were identified. Whereas the thallus surface of H. coerulea was level, H. prevostii formed(More)
Biological soil crusts, formed by an association of soil particles with cyanobacteria, lichens, mosses, fungi and bacteria in varying proportions, live in or directly on top of the uppermost soil layer. To evaluate their role in the global carbon cycle, gas exchange measurements were conducted under controlled conditions. Moss-dominated soil crusts were(More)