Learn More
Mutations in fused in sarcoma (FUS) are a cause of familial amyotrophic lateral sclerosis (fALS). Patients carrying point mutations in the C-terminus of FUS show neuronal cytoplasmic FUS-positive inclusions, whereas in healthy controls, FUS is predominantly nuclear. Cytoplasmic FUS inclusions have also been identified in a subset of frontotemporal lobar(More)
Expansion of a GGGGCC hexanucleotide repeat upstream of the C9orf72 coding region is the most common cause of familial frontotemporal lobar degeneration and amyotrophic lateral sclerosis (FTLD/ALS), but the pathomechanisms involved are unknown. As in other FTLD/ALS variants, characteristic intracellular inclusions of misfolded proteins define C9orf72(More)
Degeneration of dopaminergic neurons in the substantia nigra is characteristic for Parkinson's disease (PD), the second most common neurodegenerative disorder. Mitochondrial dysfunction is believed to contribute to the etiology of PD. Although most cases are sporadic, recent evidence points to a number of genes involved in familial variants of PD. Among(More)
Gene modifications in animal models have been greatly facilitated through the application of targeted genome editing tools. The prokaryotic CRISPR/Cas9 type II genome editing system has recently been applied in cell lines and vertebrates. However, we still have very limited information about the efficiency of mutagenesis, germline transmission rates and(More)
Dorsoventral axis formation in the Drosophila embryo is established by a signal transduction pathway that comprises the products of at least 12 maternal genes. Two of these genes, dorsal and cactus, show homology to the mammalian transcription factor NF-kappa B and its inhibitor I kappa B, respectively. As in the case for I kappa B and NF-kappa B, Cactus(More)
Loss of function mutations in progranulin cause tau-negative frontotemporal lobar degeneration with ubiquitin-positive inclusions. A major protein component of these inclusions is TDP-43, which becomes hyperphosphorylated, ubiquitinated, and cleaved to generate C-terminal fragments, which apparently translocate from nuclei to the cytoplasm. Most progranulin(More)
Iron is required to produce haem and iron-sulphur (Fe-S) clusters, processes thought to occur independently. Here we show that the hypochromic anaemia in shiraz (sir) zebrafish mutants is caused by deficiency of glutaredoxin 5 (grx5), a gene required in yeast for Fe-S cluster assembly. We found that grx5 was expressed in erythroid cells of zebrafish and(More)
Zebrafish has become a popular model organism to study human diseases. We will highlight the advantages and limitations of zebrafish as a model organism to study neurodegenerative diseases and introduce zinc finger nucleases, transcription activator-like effector nucleases, and the recently established clustered regularly interspaced short palindromic(More)
The ability to form memories is a prerequisite for an organism's behavioral adaptation to environmental changes. At the molecular level, the acquisition and maintenance of memory requires changes in chromatin modifications. In an effort to unravel the epigenetic network underlying both short- and long-term memory, we examined chromatin modification changes(More)
Proteolytic shedding of cell surface proteins generates paracrine signals involved in numerous signaling pathways. Neuregulin 1 (NRG1) type III is involved in myelination of the peripheral nervous system, for which it requires proteolytic activation by proteases of the ADAM family and BACE1. These proteases are major therapeutic targets for the prevention(More)