Betsy C. Taylor

Learn More
Intestinal epithelial cells (IECs) provide a primary physical barrier against commensal and pathogenic microorganisms in the gastrointestinal (GI) tract, but the influence of IECs on the development and regulation of immunity to infection is unknown. Here we show that IEC-intrinsic IkappaB kinase (IKK)-beta-dependent gene expression is a critical regulator(More)
Intestinal epithelial cells (IECs) produce thymic stromal lymphopoietin (TSLP); however, the in vivo influence of TSLP-TSLP receptor (TSLPR) interactions on immunity and inflammation in the intestine remains unclear. We show that TSLP-TSLPR interactions are critical for immunity to the intestinal pathogen Trichuris. Monoclonal antibody-mediated(More)
Alterations in the composition of intestinal commensal bacteria are associated with enhanced susceptibility to multiple inflammatory diseases, including those conditions associated with interleukin (IL)-17-producing CD4(+) T helper (Th17) cells. However, the relationship between commensal bacteria and the expression of proinflammatory cytokines remains(More)
Dendritic cells can prime naïve CD4 + T cells, however we demonstrate that DC-mediated priming is insufficient for the development of T H 2 cell-dependent immunity. We identify basophils as a dominant cell population that coexpressed MHC class II and Il4 message following helminth infection. Basophilia was promoted by thymic stromal lymphopoietin (TSLP) and(More)
  • 1