Beth Winkelstein

6Benjamin B Guarino
4Raymond D Hubbard
Learn More
Nerve root deformation magnitude affects behavioral sensitivity and spinal cytokine expression in a lumbar radiculopathy model. Despite evidence suggesting spinal glia play a role in persistent pain, no study has examined the relationship between injury severity in painful radiculopathy and spinal glial activation. This study quantified local in vivo(More)
Increased sensitivity to mechanical stimuli produced by transient cervical nerve root compression is dependent on the severity of applied load. In addition, trauma in the nervous system induces local inflammation, Wallerian degeneration, and a host of other degenerative processes leading to axonal dysfunction. Here, axonal degeneration and inflammation were(More)
STUDY DESIGN Behavioral and immunohistochemical analysis in rat models of persistent and transient allodynia. OBJECTIVES To examine separate cervical nerve root injuries (compression, transection) for producing behavioral hypersensitivity and investigate spinal neuropeptides to understand relationships to pain symptoms. SUMMARY OF BACKGROUND DATA(More)
While extensive research points to mechanical injury of the cervical facet joint as a mechanism of whiplash injury, findings remain speculative regarding its potential for causing pain. The purpose of this study was to examine the relationship between facet joint distraction, capsular ligament strain, cellular nociceptive responses, and pain. A novel rat(More)
This review will offer an overview of the mechanistic pathways of chronic pain associated with musculoskeletal disorders (MSDs). Traditional electrophysiological pain pathways of these injuries will be reviewed. In addition, recent research efforts in persistent pain have characterized a cascade of neuroimmunologic events in the central nervous system that(More)
While studies have demonstrated the cervical facet capsule is at risk for tensile injury during whiplash, the relationship between joint loading, changes in the capsule's structure, and pain is not yet fully characterized. Complementary approaches were employed to investigate the capsule's structure-function relationship in the context of painful joint(More)
Both chemical irritation and mechanical compression affect radicular pain from disc herniation. However, relative effects of these insults on pain symptoms are unclear. This study investigated chemical and mechanical contributions for painful cervical nerve root injury. Accordingly, the C7 nerve root separately underwent chromic gut exposure, 10gf(More)
There is much evidence supporting the hypothesis that magnitude of nerve root mechanical injury affects the nature of the physiological responses which can contribute to pain in lumbar radiculopathy. Specifically, injury magnitude has been shown to modulate behavioral hypersensitivity responses in animal models of radiculopathy. However, no study has(More)
The purpose of this study is to test the hypothesis that the upper cervical spine is weaker than the lower cervical spine in pure flexion and extension bending, which may explain the propensity for upper cervical spine injuries in airbag deployments. An additional objective is to evaluate the relative strength and flexibility of the upper and lower cervical(More)
Chronic neck pain affects up to 70% of persons, with the facet joint being the most common source. Intra-articular injection of the non-steroidal anti-inflammatory drug ketorolac reduces post-operative joint-mediated pain; however, the mechanism of its attenuation of facet-mediated pain has not been evaluated. Protease-activated receptor-1 (PAR1) has(More)