Beth B. McConnell

Learn More
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human(More)
After a limited number of population doublings (PDs), cultures of normal mammalian diploid cells undergo an irreversible growth arrest known as replicative senescence [1]. As well as contributing to cellular ageing, senescence is viewed as an important mechanism of tumour suppression by preventing the emergence of immortal cell clones [2-4]. Senescent cells(More)
Gene silencing associated with aberrant methylation of promoter region CpG islands is an acquired epigenetic alteration that serves as an alternative to genetic defects in the inactivation of tumor suppressor and other genes in human cancers. The hypothesis that aberrant methylation plays a direct causal role in carcinogenesis hinges on the question of(More)
Chronic inflammatory disorders are often associated with an increased risk of developing cancer. A classic example of the connection between inflammation and cancer is the increased risk of colorectal cancer in patients with inflammatory bowel disease (IBD). In this review, we discuss aspects of IBD that promote colorectal cancer and highlight key molecular(More)
BACKGROUND & AIMS Krüppel-like factor 5 (KLF5) is a zinc finger-transcription factor that regulates cell proliferation. Oncogenic KRAS mutations are commonly found in colorectal cancers. We aimed to determine whether KLF5 mediates KRAS functions during intestinal tumorigenesis. METHODS The effects of KLF5 on proliferation and transformation were examined(More)
The zinc finger transcription factor, Krüppel-like factor 4 (KLF4), is expressed in the post-mitotic, differentiated epithelial cells lining the intestinal tract and exhibits a tumor suppressive effect on intestinal tumorigenesis. Here we report a role for KLF4 in maintaining homeostasis of intestinal epithelial cells. Mice with conditional ablation of the(More)
The Krüppel-like factors (KLFs) comprise a family of evolutionarily conserved zinc finger transcription factors that regulate numerous biological processes including proliferation, differentiation, development and apoptosis. KLF4 and KLF5 are two closely related members of this family and are both highly expressed in epithelial tissues. In the intestinal(More)
BACKGROUND & AIMS Krüppel-like factor 5 (KLF5) is a transcription factor that promotes proliferation, is highly expressed in dividing crypt cells of the gastrointestinal epithelium, and is induced by various stress stimuli. We sought to determine the role of KLF5 in colonic inflammation and recovery by studying mice with dextran sulfate sodium (DSS)-induced(More)
SUMOylation is a form of post-translational modification shown to control nuclear transport. Krüppel-like factor 5 (KLF5) is an important mediator of cell proliferation and is primarily localized to the nucleus. Here we show that mouse KLF5 is SUMOylated at lysine residues 151 and 202. Mutation of these two lysines or two conserved nearby glutamates results(More)
Lipopolysaccharide (LPS) is a bacterially-derived endotoxin that elicits a strong proinflammatory response in intestinal epithelial cells. It is well established that LPS activates this response through NF-kappaB. In addition, LPS signals through the mitogen-activated protein kinase (MAPK) pathway. We previously demonstrated that the Krüppel-like factor 5(More)