Beth A. Carlson

Learn More
Classical speaker and language recognition techniques can be applied to the classiication of unknown utterances by computing the likelihoods of the utterances given a set of well trained target models. This paper addresses the problem of grouping unknown utterances when no information is available regarding the speaker or language classes or even the total(More)
Speech recognizers trained with quiet wide-band speech degrade dramatically with high-pass, low-pass, and notch filtering, with noise, and with interruptions of the speech input. A new and simple approach to compensate for these degradations is presented which uses mel-filter-bank (MFB) magnitudes as input features and missing feature theory to dynamically(More)
  • 1