Bertrand Tavitian

Learn More
  • Laura Cerchia, Frédéric Ducongé, Carine Pestourie, Jocelyne Boulay, Youssef Aissouni, Karine Gombert +3 others
  • 2005
Targeting large transmembrane molecules, including receptor tyrosine kinases, is a major pharmacological challenge. Specific oligonucleotide ligands (aptamers) can be generated for a variety of targets through the iterative evolution of a random pool of sequences (SELEX). Nuclease-resistant aptamers that recognize the human receptor tyrosine kinase RET were(More)
Inflammation is a highly dynamic and complex adaptive process to preserve and restore tissue homeostasis. Originally viewed as an immune-privileged organ, the central nervous system (CNS) is now recognized to have a constant interplay with the innate and the adaptive immune systems, where resident microglia and infiltrating immune cells from the periphery(More)
UNLABELLED The induction of neuroinflammatory processes, characterized by upregulation of the peripheral benzodiazepine receptor (PBR) expressed by microglial cells, is well correlated with neurodegenerative diseases and with acute neuronal loss. The continually increasing incidence of neurodegenerative diseases in developed countries has become a major(More)
Positron emission tomography (PET) is a useful tool for pharmacokinetics studies in rodents during the preclinical phase of drug and tracer development. However, rodent organs are small as compared to the scanner's intrinsic resolution and are affected by physiological movements. We present a new method for the segmentation of rodent whole-body PET images(More)
The hope of success of therapeutic interventions largely relies on the possibility to distinguish between even close tumor types with high accuracy. Indeed, in the last ten years a major challenge to predict the responsiveness to a given therapeutic plan has been the identification of tumor specific signatures, with the aim to reduce the frequency of(More)
Neuroinflammation is a process characterised by drastic changes in microglial morphology and by marked upregulation of the 18-kDa translocator protein (TSPO) on the mitochondria. The continual increase in incidence of neuroinflammation and neurodegenerative diseases poses a major health issue in many countries, requiring more innovative diagnostic and(More)
Bioluminescence imaging (BLI) allows detection of biological functions in genetically modified cells, bacteria, or animals expressing a luciferase (i.e., firefly, Renilla, or aequorin). Given the high sensitivity and minimal toxicity of BLI, in vivo studies on molecular events can be performed noninvasively in living rodents. To date, detection of(More)
  • Kelly L. Rogers, Sandrine Picaud, Emilie Roncali, Raphaël Boisgard, Cesare Colasante, Jacques Stinnakre +2 others
  • 2007
Rapid and transient elevations of Ca(2+) within cellular microdomains play a critical role in the regulation of many signal transduction pathways. Described here is a genetic approach for non-invasive detection of localized Ca(2+) concentration ([Ca(2+)]) rises in live animals using bioluminescence imaging (BLI). Transgenic mice conditionally expressing the(More)
PURPOSE In recent years there has been an increase in the development of radioligands targeting the 18-kDa translocator protein (TSPO). TSPO expression is well documented in activated microglia and serves as a biomarker for imaging neuroinflammation. In addition, TSPO has also been reported to be overexpressed in a number of cancer cell lines and human(More)
We aimed to characterize the transgenic Huntington rat model with in vivo imaging and identify sensitive and reliable biomarkers associated with early and progressive disease status. In order to do so, we performed a multimodality (DTI and PET) longitudinal imaging study, during which the same TgHD and wildtype (Wt) rats were repetitively scanned.(More)